WELL-POSEDNESS IN SOBOLEV SPACES OF THE TWO-DIMENSIONAL MHD BOUNDARY LAYER EQUATIONS WITHOUT VISCOSITY

被引:6
|
作者
Li, Wei-Xi [1 ,2 ]
Xu, Rui [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Computat Sci Hubei Key Lab, Wuhan 430072, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2021年 / 29卷 / 06期
基金
中国国家自然科学基金;
关键词
MHD boundary layer; well-posedness; Sobolev space; GLOBAL EXISTENCE; PRANDTL SYSTEM;
D O I
10.3934/era.2021082
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the two-dimensional MHD Boundary layer system without hydrodynamic viscosity, and establish the existence and uniqueness of solutions in Sobolev spaces under the assumption that the tangential component of magnetic fields dominates. This gives a complement to the previous works of Liu-Xie-Yang [Comm. Pure Appl. Math. 72 (2019)] and Liu-WangXie-Yang [J. Funct. Anal. 279 (2020)], where the well-posedness theory was established for the MHD boundary layer systems with both viscosity and resistivity and with viscosity only, respectively. We use the pseudo-differential calculation, to overcome a new difficulty arising from the treatment of boundary integrals due to the absence of the diffusion property for the velocity.
引用
收藏
页码:4243 / 4255
页数:13
相关论文
共 50 条
  • [1] Well-posedness of the MHD boundary layer equations with small initial data in Sobolev space
    Dong, Xiaolei
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (12): : 6618 - 6640
  • [2] MHD Boundary Layers Theory in Sobolev Spaces Without Monotonicity I: Well-Posedness Theory
    Liu, Cheng-Jie
    Xie, Feng
    Yang, Tong
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2019, 72 (01) : 63 - 121
  • [3] LONG TIME WELL-POSEDNESS OF COMPRESSIBLE MAGNETOHYDRODYNAMIC BOUNDARY LAYER EQUATIONS IN SOBOLEV SPACES
    Li, Shengxin
    Xie, Feng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024, 44 (04) : 943 - 969
  • [4] Long Time Well-Posedness of the MHD Boundary Layer Equation in Sobolev Space
    Chen, Dongxiang
    Ren, Siqi
    Wang, Yuxi
    Zhang, Zhifei
    ANALYSIS IN THEORY AND APPLICATIONS, 2020, 36 (01) : 1 - 18
  • [5] Long Time Well-Posedness of the MHD Boundary Layer Equation in Sobolev Space
    Dongxiang Chen
    Siqi Ren
    Yuxi Wang
    Zhifei Zhang
    Analysis in Theory and Applications, 2020, 36 (01) : 1 - 18
  • [6] Local well-posedness to the thermal boundary layer equations in Sobolev space
    Zou, Yonghui
    Xu, Xin
    Gao, An
    AIMS MATHEMATICS, 2023, 8 (04): : 9933 - 9964
  • [7] Well-posedness of the boundary layer equations
    Lombardo, MC
    Cannone, M
    Sammartino, M
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 35 (04) : 987 - 1004
  • [8] Local-in-time well-posedness theory for the inhomogeneous MHD boundary layer equations without resistivity in lower regular Sobolev space
    Gao, Jincheng
    Peng, Lianyun
    Yao, Zheng-an
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 374 : 446 - 496
  • [9] WELL-POSEDNESS IN CRITICAL SPACES FOR THE FULL COMPRESSIBLE MHD EQUATIONS
    Bian, Dongfen
    Guo, Boling
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (04) : 1153 - 1176
  • [10] WELL-POSEDNESS IN CRITICAL SPACES FOR THE FULL COMPRESSIBLE MHD EQUATIONS
    边东芬
    郭柏灵
    Acta Mathematica Scientia, 2013, 33 (04) : 1153 - 1176