Extension of convex models and its improvement on the approximate solution

被引:0
|
作者
Qui, ZP
Gu, YX
机构
关键词
convex modeling; uncertain but bounded parameters; nonconvexity; perturbation; first order approximation;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, by means of combining non-probabilistic convex modeling with perturbation theory, an improvement is made on the first order approximate solution in convex models of uncertainties. Convex modeling is extended to largely uncertain and non-convex sets of uncertainties and the combinational convex modeling is developed. The presented method not only extends applications of convex modeling, but also improves its accuracy in uncertain problems and computational efficiency. The numerical example illustrates the efficiency of the proposed method.
引用
收藏
页码:349 / 357
页数:9
相关论文
共 50 条
  • [1] EXTENSION OF CONVEX MODELS AND ITS IMPROVEMENT ON THE APPROXIMATE SOLUTION
    邱志平
    顾元宪
    Acta Mechanica Sinica, 1996, 12 (04) : 349 - 357
  • [2] APPROXIMATE SOLUTION OF QUEUING MODELS
    SAUER, CH
    CHANDY, KM
    COMPUTER, 1980, 13 (04) : 25 - 32
  • [3] On a Approximate Solution of the Problem of Aspherical Convex Compact Set
    Dudov, S., I
    Mesheryakova, E. A.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2010, 10 (04): : 13 - 17
  • [4] An improvement and an extension on the hybrid index for approximate string matching
    Hyyrö, H
    STRING PROCESSING AND INFORMATION RETRIEVAL, PROCEEDINGS, 2004, 3246 : 208 - 209
  • [5] An improvement and an extension on the hybrid index for approximate string matching
    PRESTO, Japan Science and Technology Agency, Japan
    不详
    1611, 208-209 (2004):
  • [6] Approximate convex decomposition of polyhedra and its applications
    Lien, Jyh-Ming
    Amato, Nancy M.
    COMPUTER AIDED GEOMETRIC DESIGN, 2008, 25 (07) : 503 - 522
  • [7] An approximate solution of two-dimensional convex piston problem
    Singh, SK
    Singh, VP
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1999, 50 (02): : 206 - 221
  • [8] An approximate solution of two-dimensional convex piston problem
    S. K. Singh
    V. P. Singh
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 1999, 50 : 206 - 221
  • [9] Method for finding an approximate solution of the asphericity problem for a convex body
    S. I. Dudov
    E. A. Meshcheryakova
    Computational Mathematics and Mathematical Physics, 2013, 53 : 1483 - 1493
  • [10] Method for finding an approximate solution of the asphericity problem for a convex body
    Dudov, S. I.
    Meshcheryakova, E. A.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (10) : 1483 - 1493