Multi-agent simulation of generation expansion in electricity markets

被引:0
|
作者
Botterud, Audun [1 ]
Mahalik, Matthew R. [1 ]
Veselka, Thomas D. [1 ]
Ryu, Heon-Su [2 ,3 ]
Sohn, Ki-Won [2 ,3 ]
机构
[1] Argonne Natl Lab, Decis & Informat Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA
[2] Korea Power Exchange, Power Planning Dept, Seoul 135791, South Korea
[3] Korea Power Exchange, Market Operat Dept, Seoul 135791, South Korea
关键词
electricity markets; generation expansion; agent-based modeling; probabilistic dispatch; decision analysis;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a new multi-agent model of generation expansion in electricity markets. The model simulates generation investment decisions of decentralized generating companies (GenCos) interacting in a complex, multidimensional environment A probabilistic dispatch algorithm calculates prices and profits for new candidate units in different future states of the system. Uncertainties in future load, hydropower conditions, and competitors' actions are represented in a scenario tree, and decision analysis is used to identify the optimal expansion decision for each individual GenCo. We test the model using real data for the Korea power system under different assumptions about market design, market concentration, and GenCo's assumed expectations about their competitors' investment decisions.
引用
收藏
页码:1384 / 1391
页数:8
相关论文
共 50 条
  • [1] Generation of realistic scenarios for multi-agent simulation of electricity markets
    Silva, Francisco
    Teixeira, Brigida
    Pinto, Tiago
    Santos, Gabriel
    Vale, Zita
    Praca, Isabel
    [J]. ENERGY, 2016, 116 : 128 - 139
  • [2] A Multi-Agent Simulation Model for Generation Electricity Markets Based on Repast
    Liu, Xichui
    Shen, Jiong
    Li, Yiguo
    [J]. PROCEEDINGS OF FIRST INTERNATIONAL CONFERENCE OF MODELLING AND SIMULATION, VOL III: MODELLING AND SIMULATION IN ELECTRONICS, COMPUTING, AND BIO-MEDICINE, 2008, : 225 - 230
  • [3] Scenarios Generation for Multi-Agent simulation of Electricity Markets based on Intelligent Data Analysis
    Santos, Gabriel
    Praca, Isabel
    Pinto, Tiago
    Ramos, Sergio
    Vale, Zita
    [J]. 2013 IEEE SYMPOSIUM ON INTELLIGENT AGENT (IA), 2013, : 5 - 12
  • [4] Using Multi-Agent Simulation to Test European Electricity Markets
    Conzelmann, Guenter
    Botterud, Audun
    Wang, Jianhui
    Thimmapuram, Prakash
    [J]. 2009 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, VOLS 1-8, 2009, : 4151 - 4152
  • [5] Multi-Agent Simulation of Continental, Regional, and Micro Electricity Markets
    Santos, Gabriel
    Pinto, Tiago
    Morais, Hugo
    Vale, Zita
    Praca, Isabel
    [J]. 2012 23RD INTERNATIONAL WORKSHOP ON DATABASE AND EXPERT SYSTEMS APPLICATIONS (DEXA), 2012, : 331 - 335
  • [6] Multi-agent Negotiation in Electricity Markets
    Lopes, Fernando
    Coelho, Helder
    [J]. E-COMMERCE AND WEB TECHNOLOGIES, 2011, 85 : 114 - +
  • [7] Data Mining Approach to support the Generation of Realistic Scenarios for Multi-Agent simulation of Electricity Markets
    Teixeira, Brigida
    Silva, Francisco
    Pinto, Tiago
    Praca, Isabel
    Santos, Gabriel
    Vale, Zita
    [J]. 2014 IEEE SYMPOSIUM ON INTELLIGENT AGENTS (IA), 2014, : 8 - 15
  • [8] Multi-Agent Simulation of Generation Capacity Expansion Decisions
    Botterud, Audun
    Mahalik, Matthew R.
    Conzelmann, Guenter
    Silva, Rui Figueiredo
    Vilela, Sonia
    Pereira, Ricardo
    [J]. 2008 5TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ELECTRICITY MARKET, VOLS 1 AND 2, 2008, : 599 - +
  • [9] Demonstration of Realistic Multi-agent Scenario Generator for Electricity Markets Simulation
    Silva, Francisco
    Teixeira, Brigida
    Pinto, Tiago
    Santos, Gabriel
    Praca, Isabel
    Vale, Zita
    [J]. ADVANCES IN PRACTICAL APPLICATIONS OF AGENTS, MULTI-AGENT SYSTEMS, AND SUSTAINABILITY, 2015, 9086 : 316 - 319
  • [10] Multi-agent Simulation for Strategic Bidding in Electricity Markets Using Reinforcement Learning
    Wang, Jidong
    Wu, Jiahui
    Kong, Xiangyu
    [J]. CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2023, 9 (03): : 1051 - 1065