p-Harmonic mappings between metric spaces

被引:0
|
作者
Guo, Chang-Yu [1 ,2 ]
Huang, Manzi [3 ]
Wang, Zhuang [3 ]
Xu, Haiqing [1 ,2 ]
机构
[1] Shandong Univ, Res Ctr Math & Interdisciplinary Sci, Qingdao 266237, Peoples R China
[2] Minist Educ, Frontiers Sci Ctr Nonlinear Expectat, Qingdao, Peoples R China
[3] Hunan Normal Univ, Sch Math & Stat, MOE LCSM, Changsha 410081, Hunan, Peoples R China
关键词
Metric valued Sobolev spaces; Dirichlet problem; Upper gradients; Hajlasz-Sobolev space; Trace operator; LIPSCHITZ CONTINUITY; SOBOLEV SPACES; MAPS; REGULARITY; TRACE; EXTENSION; THEOREMS;
D O I
10.1007/s00209-022-03119-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we solve the Dirichlet problem for Sobolev maps between singular metric spaces that extends the corresponding result of Guo and Wenger (Commun Anal Geom 28(1):89-112, 2020). The main new ingredient in our proofs is a suitable extension of the theory of trace for metric valued Sobolev maps developed by Korevaar and Schoen (Commun Anal Geom 1(3-4):561-659, 1993) . We also develop a theory of trace in the borderline case, which investigates a sharp condition to characterize the existence of traces.
引用
收藏
页码:1797 / 1819
页数:23
相关论文
共 50 条
  • [1] p-Harmonic mappings between metric spaces
    Chang-Yu Guo
    Manzi Huang
    Zhuang Wang
    Haiqing Xu
    Mathematische Zeitschrift, 2022, 302 : 1797 - 1819
  • [2] Regularity of P-Harmonic Mappings into NPC Spaces
    Changyu Guo
    Changlin Xiang
    Acta Mathematica Scientia, 2021, 41 : 633 - 645
  • [3] REGULARITY OF P-HARMONIC MAPPINGS INTO NPC SPACES
    郭常予
    向长林
    ActaMathematicaScientia, 2021, 41 (02) : 633 - 645
  • [4] Regularity of P-Harmonic Mappings into NPC Spaces
    Guo, Changyu
    Xiang, Changlin
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (02) : 633 - 645
  • [5] The Perron method for p-harmonic functions in metric spaces
    Björn, A
    Björn, J
    Shanmugalingam, N
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 195 (02) : 398 - 429
  • [6] Differentiability of p-Harmonic Functions on Metric Measure Spaces
    Jasun Gong
    Piotr Hajłasz
    Potential Analysis, 2013, 38 : 79 - 93
  • [7] The Dirichlet problem for p-harmonic functions on metric spaces
    Björn, A
    Björn, J
    Shanmugalingam, N
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2003, 556 : 173 - 203
  • [8] Differentiability of p-Harmonic Functions on Metric Measure Spaces
    Gong, Jasun
    Hajlasz, Piotr
    POTENTIAL ANALYSIS, 2013, 38 (01) : 79 - 93
  • [9] Harmonic mappings between singular metric spaces
    Guo, Chang-Yu
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2021, 60 (02) : 355 - 399
  • [10] Harmonic mappings between singular metric spaces
    Chang-Yu Guo
    Annals of Global Analysis and Geometry, 2021, 60 : 355 - 399