Parameter Estimation of Generalized Linear Models without Assuming their Link Function

被引:0
|
作者
Acharyya, Sreangsu [1 ]
Ghosh, Joydeep [2 ]
机构
[1] Microsoft Res India, Cloud & Informat Serv Lab, Bengaluru, Karnataka, India
[2] Univ Texas Austin, Elect Engn Dept, Austin, TX 78712 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Canonical generalized linear models (GLM) are specified by a finite dimensional vector and a monotonically increasing function called the link function. Standard parameter estimation techniques hold the link function fixed and optimizes over the parameter vector. We propose a parameter-recovery facilitating, jointly-convex, regularized loss functional that is optimized globally over the vector as well as the link function, with best rates possible under a first order oracle model. This widens the scope of GLMs to cases where the link function is unknown.
引用
收藏
页码:10 / 18
页数:9
相关论文
共 50 条