Fourier algebras of hypergroups and central algebras on compact (quantum) groups

被引:0
|
作者
Alaghmandan, Mahmood [1 ,2 ]
Crann, Jason [3 ]
机构
[1] Chalmers Univ Technol, Dept Math Sci, S-41296 Gothenburg, Sweden
[2] Univ Gothenburg, S-41296 Gothenburg, Sweden
[3] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
关键词
Fourier algebras of hypergroups; completely bounded multipliers; amenability; central algebras; compact quantum groups; COMMUTATIVE BANACH-ALGEBRAS; AMENABLE HYPERGROUPS; STIELTJES ALGEBRAS; AMENABILITY; MULTIPLIERS;
D O I
10.4064/sm8643-3-2017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper concerns the study of regular Fourier hypergroups through multipliers of their associated Fourier algebras. We establish hypergroup analogues of well-known characterizations of group amenability, introduce a notion of weak amenability for hypergroups, and show that every discrete commutative hypergroup is weakly amenable with constant 1. Using similar techniques, we provide a sufficient condition for amenability of hypergroup Fourier algebras, which, as an immediate application, answers one direction of a conjecture of Azimifard-Same-Spronk (2009) on the amenability of ZL(1) (G) for compact groups G. In the final section we consider Fourier algebras of hypergroups arising from compact quantum groups G, and in particular establish a completely isometric isomorphism with the center of the quantum group algebra for compact G of Kac type.
引用
收藏
页码:225 / 247
页数:23
相关论文
共 50 条
  • [1] Fourier algebras on locally compact hypergroups
    Bami, M. Lashkarizadeh
    Pourgholarnhossein, M.
    Samea, H.
    [J]. MATHEMATISCHE NACHRICHTEN, 2009, 282 (01) : 16 - 25
  • [2] Compact and Weakly Compact Multipliers on Fourier Algebras of Ultraspherical Hypergroups
    Esmailvandi, Reza
    Nemati, Mehdi
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (01)
  • [3] Compact and Weakly Compact Multipliers on Fourier Algebras of Ultraspherical Hypergroups
    Reza Esmailvandi
    Mehdi Nemati
    [J]. Mediterranean Journal of Mathematics, 2021, 18
  • [4] Fourier algebras on tensor hypergroups
    Amini, M
    Medghalchi, A
    [J]. BANACH ALGEBRAS AND THEIR APPLICATIONS, 2004, 363 : 1 - 14
  • [5] SOME BEURLING-FOURIER ALGEBRAS ON COMPACT GROUPS ARE OPERATOR ALGEBRAS
    Ghandehari, Mahya
    Lee, Hun Hee
    Samei, Ebrahim
    Spronk, Nico
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (10) : 7029 - 7059
  • [6] New Deformations of Convolution Algebras and Fourier Algebras on Locally Compact Groups
    Lee, Hun Hee
    Youn, Sang-gyun
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2017, 69 (02): : 434 - 452
  • [7] Weak Amenability of Fourier Algebras on Compact groups
    Forrest, Brian E.
    Samei, Ebrahim
    Spronk, Nico
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (03) : 1379 - 1393
  • [8] p-Fourier algebras on compact groups
    Lee, Hun Hee
    Samei, Ebrah M.
    Spronk, Nico
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (04) : 1469 - 1514
  • [9] Compact Hopf *-algebras, quantum enveloping algebras and dual Woronowicz algebras for quantum Lorentz groups
    Kurose, H
    Nakagami, Y
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 1997, 8 (07) : 959 - 997
  • [10] Hecke *-algebras on locally compact hypergroups
    Tabatabaie, Seyyed Mohammad
    Sadathoseyni, Bentolhoda
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (05) : 819 - 829