Experimental and modeling study of blended membranes for direct methanol fuel cells

被引:8
|
作者
Kim, Deuk Ju [1 ]
Park, Chi Hoon [2 ]
Tocci, Elena [3 ]
Nam, Sang Yong [1 ]
机构
[1] Gyeongsang Natl Univ, Engn Res Inst, Dept Mat Engn & Convergence Technol, Jinju, South Korea
[2] Gyeongnam Natl Univ Sci & Technol, Dept Energy Engn, Jinju, South Korea
[3] CNR, Res Inst Membrane Technol ITM, Via P Bucci 17-C, I-87030 Arcavacata Di Rende, CS, Italy
基金
新加坡国家研究基金会;
关键词
Molecular dynamic simulation; Blend membrane; Compatibility; Diffusivity; Fuel cell; PROTON-EXCHANGE MEMBRANES; MOLECULAR-DYNAMICS; POLYMER BLENDS; FORCE-FIELD; FREE-VOLUME; SIMULATION; HYDROGEN; ELECTROLYTE; NAFION; WATER;
D O I
10.1016/j.memsci.2018.07.016
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The dynamics of hydronium ions and methanol molecules in hydrated SPAES and blend membranes are investigated via molecular dynamics simulations using the COMPASS force field. In addition to calculating the diffusion coefficients as a function of the hydration level, an amorphous cell with a specific composition of H2O molecules and H3O+ determined from the experimental data is constructed and tested. The water and methanol diffusion coefficients are considerably smaller at lower hydration levels and room temperature. The diffusion coefficient of the water and methanol molecules increases with increases in the hydration level, and this is in good agreement with experiment data. Analysis of the pair correlation functions supports the experimental observations of the membrane performance with hydration related to the water and methanol diffusion behavior in hydrated SPAES and blend membranes.
引用
收藏
页码:308 / 316
页数:9
相关论文
共 50 条
  • [1] Blended polyphosphazene/polyacrylonitrile membranes for direct methanol fuel cells
    Carter, R
    Wycisk, R
    Yoo, H
    Pintauro, PN
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2002, 5 (09) : A195 - A197
  • [2] Improving the performance of direct methanol fuel cells by implementing multilayer membranes blended with cellulose nanocrystals
    Hosseinpour, Milad
    Sahoo, Madhumita
    Perez-Page, Maria
    Baylis, Sebastian Ross
    Patel, Faisal
    Holmes, Stuart M.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (57) : 30409 - 30419
  • [3] Composite membranes for direct methanol fuel cells
    Libby, B
    Smyrl, WH
    Cussler, EL
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (12) : A197 - A199
  • [4] Pervaporation membranes in direct methanol fuel cells
    Pivovar, BS
    Wang, YX
    Cussler, EL
    JOURNAL OF MEMBRANE SCIENCE, 1999, 154 (02) : 155 - 162
  • [5] New membranes for direct methanol fuel cells
    Jörissen, L
    Gogel, V
    Kerres, J
    Garche, J
    JOURNAL OF POWER SOURCES, 2002, 105 (02) : 267 - 273
  • [6] Blended Nafion®/SPEEK direct methanol fuel cell membranes for reduced methanol permeability
    Tsai, Jie-Cheng
    Cheng, Hui-Pin
    Kuo, Jen-Feng
    Huang, Yao-Hui
    Chen, Chuh-Yung
    JOURNAL OF POWER SOURCES, 2009, 189 (02) : 958 - 965
  • [7] Porous lignosulfonate membranes for direct methanol fuel cells
    Zhang, X
    Glüsen, A
    Garcia-Valls, R
    JOURNAL OF MEMBRANE SCIENCE, 2006, 276 (1-2) : 301 - 307
  • [8] Evaluation of composite membranes for direct methanol fuel cells
    Li, X
    Roberts, EPL
    Holmes, SM
    JOURNAL OF POWER SOURCES, 2006, 154 (01) : 115 - 123
  • [9] Impregnated membranes for direct methanol fuel cells at high methanol concentrations
    Yildirim, M. Hakan
    Schwarz, Alexander
    Stamatialis, Dimitrios F.
    Wessling, Matthias
    JOURNAL OF MEMBRANE SCIENCE, 2009, 328 (1-2) : 127 - 133
  • [10] Water and methanol transport in membranes for direct methanol fuel cells.
    Ren, X
    Zawodzinski, T
    Gottesfeld, S
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 217 : U490 - U490