Positive solutions for the degenerate logistic indefinite superlinear problem:: The slow diffusion case

被引:0
|
作者
Delgado, M [1 ]
Suárez, A [1 ]
机构
[1] Univ Sevilla, Dpto Ecuac Diferenciales & Anal Numer, Fac Matemat, Seville, Spain
来源
HOUSTON JOURNAL OF MATHEMATICS | 2003年 / 29卷 / 03期
关键词
degenerate logistic indefinite equation; singular eigenvalue problems; indefinite superlinear problems; multiplicity results;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we study the existence, stability and multiplicity of the positive steady-states solutions of the degenerate logistic indefinite superlinear problem. By an adequate change of variable, the problem is transformed into an elliptic equation with concave and indefinite convex nonlinearities. We use singular spectral theory, the Leray-Schauder degree, bifurcation and monotony methods to obtain the existence results, and fixed point index in cones and a Picone identity to show the multiplicity results and the existence of a unique positive solution linearly asymptotically stable.
引用
收藏
页码:801 / 820
页数:20
相关论文
共 50 条