A unified constitutive model in simulating creep strains in addition to fatigue responses of Haynes 230

被引:30
|
作者
Barrett, Paul R. [1 ,2 ]
Hassan, Tasnim [1 ]
机构
[1] North Carolina State Univ, Dept Civil Construct & Environm Engn, 2501 Stinson Dr,Mann Hall, Raleigh, NC 27607 USA
[2] Corvid Technol, Mooresville, NC 28117 USA
关键词
Viscoplasticity; Unified constitutive model; Damage model; Creep; Fatigue-creep; NICKEL-BASE SUPERALLOY; LOW-CYCLE FATIGUE; CONTINUUM DAMAGE MECHANICS; THERMOMECHANICAL FATIGUE; VISCOPLASTICITY; PLASTICITY; TIME;
D O I
10.1016/j.ijsolstr.2019.09.001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A unified constitutive model (UCM) specifies that its flow rule for inelasticity computes both the plastic and creep strains as a single state variable. A Chaboche framework based UCM with the modeling features of strain range-dependence, strain rate-dependence, static recovery and mean stress evolution was developed and experimentally validated against a broad set of fatigue and fatigue-creep responses of Haynes 230 (HA 230) under isothermal and anisothermal temperature conditions. This article demonstrates that this advanced Chaboche-based UCM can simulate the secondary minimum creep strain rates reasonably, but is unable to predict the tertiary creep strain responses. To simulate the tertiary creep strain responses a continuum damage model is needed to be coupled to the UCM. This study also evaluated three different unified flow rules, Norton's power law, exponential Norton and sine-hyperbolic Norton for calculating the inelastic strain rates. It is found that the choice of flow rule is important in simulating the stress amplitude saturation rate of fatigue responses, but has minimal effect in simulating the tertiary creep strains. However, the damage coupled UCM independent to the unified flow rules listed above can adequately simulate fatigue, fatigue-creep including the stress relaxation during strain dwell, and creep strain up to the tertiary range for HA 230. The drawbacks of the damage coupled UCM are the hysteresis loop softening at very high temperatures and asymptotic simulation at low creep temperatures, which are identified as challenges to be overcome towards developing a universal UCM for robust design and analysis of high temperature components. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:394 / 409
页数:16
相关论文
共 50 条
  • [1] UNIFIED CONSTITUTIVE MODELING OF HAYNES 230 FOR THERMOMECHANICAL FATIGUE-CREEP AND CREEP BEHAVIOR
    Cao, Wenyu
    Zhang, Hualiang
    PROCEEDINGS OF ASME 2022 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2022, VOL 9, 2022,
  • [2] A UNIFIED VISCOPLASTIC MODEL FOR CREEP AND FATIGUE-CREEP RESPONSE SIMULATION OF HAYNES 230
    Barrett, Paul Ryan
    Hassan, Tasnim
    ASME PRESSURE VESSELS AND PIPING CONFERENCE - 2015, VOL 3, 2015,
  • [3] ISOTHERMAL FATIGUE RESPONSES AND CONSTITUTIVE MODELING OF HAYNES 230
    Barrett, Paul Ryan
    Menon, Mamballykalathil
    Hassan, Tasnim
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE 2012, PVP 2012, VOL 9, 2012, : 71 - 79
  • [4] CONSTITUTIVE MODELING OF HAYNES 230 FOR ANISOTHERMAL THERMO-MECHANICAL FATIGUE AND MULTIAXIAL CREEP-RATCHETING RESPONSES
    Ahmed, Raasheduddin
    Barrett, Paul R.
    Hassan, Tasnim
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE - 2013, VOL 6B: MATERIALS AND FABRICATION, 2014,
  • [5] Unified viscoplasticity modeling for isothermal low-cycle fatigue and fatigue-creep stress-strain responses of Haynes 230
    Ahmed, Raasheduddin
    Barrett, Paul R.
    Hassan, Tasnim
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2016, 88-89 : 131 - 145
  • [6] THERMOMECHANICAL FATIGUE RESPONSE AND CONSTITUTIVE MODELING FOR HAYNES 230
    Morrison, Machel
    Ahmed, Raasheduddin
    Hassan, Tasnim
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, 2016, VOL 5, 2017,
  • [7] Constitutive modeling for thermo-mechanical low-cycle fatigue-creep stress-strain responses of Haynes 230
    Ahmed, Raasheduddin
    Hassan, Tasnim
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2017, 126 : 122 - 139
  • [8] CONSTITUTIVE MODEL DEVELOPMENT FOR THERMO-MECHANICAL FATIGUE RESPONSE SIMULATION OF HAYNES 230
    Ahmed, Raasheduddin
    Menon, Mamballykalathil
    Hassan, Tasnim
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE 2012, PVP 2012, VOL 9, 2012, : 171 - 179
  • [9] Isothermal low-cycle fatigue and fatigue-creep of Haynes 230
    Barrett, Paul R.
    Ahmed, Raasheduddin
    Menon, Mamballykalathil
    Hassan, Tasnim
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2016, 88-89 : 146 - 164
  • [10] Unified constitutive modeling of Haynes 230 including cyclic hardening/softening and dynamic strain aging under isothermal low-cycle fatigue and fatigue-creep loads
    Cao, Wenyu
    Yang, Junjie
    Zhang, Hualiang
    INTERNATIONAL JOURNAL OF PLASTICITY, 2021, 138