Modeling and Dynamics of a Horizontal Axis Wind Turbine

被引:24
|
作者
Kessentini, S. [1 ]
Choura, S. [2 ]
Najar, F. [3 ]
Franchek, M. A. [4 ]
机构
[1] Sfax Preparatory Engn Inst, Dept Math & Phys, Sfax 3000, Tunisia
[2] Natl Engn Sch Sfax, Microelectrothermal Syst Res Unit, Sfax 3038, Tunisia
[3] Tunisia Polytech Sch, Appl Mech Res Lab, La Marsa 2078, Tunisia
[4] Univ Houston, Dept Mech Engn, Houston, TX 77204 USA
关键词
HAWT; mathematical model; pitch angle; DQM; DIFFERENTIAL QUADRATURE; ROTOR-BLADE; EQUATIONS; DESIGN; OPTIMIZATION; VIBRATION;
D O I
10.1177/1077546309350189
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, we develop a mathematical model of a horizontal axis wind turbine (HAWT) with flexible tower and blades. The model describes the flapping flexures of the tower and blades, and takes into account the nacelle pitch angle and structural damping. The eigenvalue problem is solved both analytically and numerically using the differential quadrature method (DQM). The closed-form and numerical solutions are compared, and the precision of the DQM-estimated solution with a low number of grid points is concluded. Next, we examine the effects of pitch angle and blade orientation on the natural frequencies and mode shapes of the wind turbine. We find that these parameters do not incur apparent alteration of the natural frequencies. Then, we examine the linear dynamics of the wind turbine subjected to persistent excitations applied to the tower. We investigate the effects of the pitch angle and blade orientation on the linear vibrations of the wind turbine. We demonstrate that the time response of the coupled system remain nearly unaffected. We show that small vibrations of the tower induce important blade deflections, and thus, the dynamic tower-blade coupling cannot be considered insignificant.
引用
收藏
页码:2001 / 2021
页数:21
相关论文
共 50 条
  • [1] Modeling the structural dynamics of horizontal axis wind turbine
    Pawlak, M.
    Mezyk, A.
    [J]. Proceedings of ISMA2006: International Conference on Noise and Vibration Engineering, Vols 1-8, 2006, : 3653 - 3663
  • [2] Rotor blade modeling for horizontal axis wind turbine
    Ma, Haomin
    Ye, Zhiquan
    Bao, Nengsheng
    Cao, Renjing
    [J]. Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2002, 23 (03): : 361 - 365
  • [3] Mathematical modeling of a horizontal axis shrouded wind turbine
    Siavash, Nemat Keramat
    Najafi, G.
    Hashjin, Teymour Tavakkoli
    Ghobadian, Barat
    Mahmoodi, Esmail
    [J]. RENEWABLE ENERGY, 2020, 146 : 856 - 866
  • [4] Modeling and Performance Analysis of a Small Horizontal Axis Wind Turbine
    Ighodaro, Osarobo
    Akhihiero, David
    [J]. JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2021, 143 (03):
  • [5] Horizontal axis wind turbine blade aerodynamics in experiments and modeling
    Schreck, Scott J.
    Robinson, Michael C.
    [J]. IEEE TRANSACTIONS ON ENERGY CONVERSION, 2007, 22 (01) : 61 - 70
  • [6] Effects of Gyroscopic Coupling on the Dynamics of a Wind Turbine Blade with Horizontal Axis
    Hamdi, Hedi
    Mrad, Charfeddine
    Nasri, Rachid
    [J]. CONDITION MONITORING OF MACHINERY IN NON-STATIONARY OPERATIONS, 2012, : 159 - 174
  • [7] Aerodynamic Analysis and Dynamic Modeling of Small Horizontal Axis Wind Turbine
    Khan, Sikandar
    Khan, Afzal
    Irfan, Muhammad
    Hussain, Shah
    [J]. 2012 INTERNATIONAL CONFERENCE ON ROBOTICS AND ARTIFICIAL INTELLIGENCE (ICRAI), 2012, : 117 - 124
  • [8] Modeling and analysis of the aeroelastic response of the horizontal axis wind turbine blade
    Lu, Yang
    Zhou, Gui-Lin
    [J]. Kongqi Donglixue Xuebao/Acta Aerodynamica Sinica, 2012, 30 (02): : 192 - 197
  • [9] Modeling and bending vibration of the blade of a horizontal-axis wind power turbine
    Lin, Shueei-Muh
    Lee, Sen-Yung
    Lin, Yu-Sheng
    [J]. CMES - Computer Modeling in Engineering and Sciences, 2008, 23 (03): : 175 - 186
  • [10] Impact of aerodynamic modeling on seakeeping performance of a floating horizontal axis wind turbine
    Leroy, Vincent
    Gilloteaux, Jean-Christophe
    Lynch, Mattias
    Babarit, Aurelien
    Ferrant, Pierre
    [J]. WIND ENERGY, 2019, 22 (08) : 1019 - 1033