Maximal Lattice-Free Convex Sets in Linear Subspaces

被引:61
|
作者
Basu, Amitabh [1 ]
Conforti, Michele [2 ]
Cornuejols, Gerard [1 ]
Zambelli, Giacomo [2 ]
机构
[1] Carnegie Mellon Univ, Tepper Sch Business, Pittsburgh, PA 15213 USA
[2] Univ Padua, Dept Pure & Appl Math, I-35121 Padua, Italy
基金
美国安德鲁·梅隆基金会;
关键词
geometry of numbers; integer programming; maximal lattice-free convex sets; minimal valid inequalities; SIMPLEX TABLEAU; CUTTING PLANES; INTEGER; INEQUALITIES; VARIABLES; ROWS; CUTS;
D O I
10.1287/moor.1100.0461
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider a model that arises in integer programming and show that all irredundant inequalities are obtained from maximal lattice-free convex sets in an affine subspace. We also show that these sets are polyhedra. The latter result extends a theorem of Lovasz characterizing maximal lattice-free convex sets in R-n.
引用
收藏
页码:704 / 720
页数:17
相关论文
共 50 条
  • [1] Inequalities for the lattice width of lattice-free convex sets in the plane
    Gennadiy Averkov
    Christian Wagner
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2012, 53 (1): : 1 - 23
  • [2] Inequalities for the lattice width of lattice-free convex sets in the plane
    Averkov, Gennadiy
    Wagner, Christian
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2012, 53 (01): : 1 - 23
  • [3] A proof of Lovász's theorem on maximal lattice-free sets
    Averkov G.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2013, 54 (1): : 105 - 109
  • [4] Lifting properties of maximal lattice-free polyhedra
    Gennadiy Averkov
    Amitabh Basu
    Mathematical Programming, 2015, 154 : 81 - 111
  • [5] Lifting properties of maximal lattice-free polyhedra
    Averkov, Gennadiy
    Basu, Amitabh
    MATHEMATICAL PROGRAMMING, 2015, 154 (1-2) : 81 - 111
  • [6] Relaxations of mixed integer sets from lattice-free polyhedra
    Del Pia, Alberto
    Weismantel, Robert
    4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2012, 10 (03): : 221 - 244
  • [7] An Analysis of Mixed Integer Linear Sets Based on Lattice Point Free Convex Sets
    Andersen, Kent
    Louveaux, Quentin
    Weismantel, Robert
    MATHEMATICS OF OPERATIONS RESEARCH, 2010, 35 (01) : 233 - 256
  • [8] Relaxations of mixed integer sets from lattice-free polyhedra
    Alberto Del Pia
    Robert Weismantel
    4OR, 2012, 10 : 221 - 244
  • [9] Relaxations of mixed integer sets from lattice-free polyhedra
    Alberto Del Pia
    Robert Weismantel
    Annals of Operations Research, 2016, 240 : 95 - 117
  • [10] Relaxations of mixed integer sets from lattice-free polyhedra
    Del Pia, Alberto
    Weismantel, Robert
    ANNALS OF OPERATIONS RESEARCH, 2016, 240 (01) : 95 - 117