Photonic temporal-mode multiplexing by quantum frequency conversion in a dichroic-finesse cavity

被引:13
|
作者
Reddy, Dileep, V [1 ,2 ,3 ,4 ]
Raymer, Michael G. [1 ,2 ]
机构
[1] Oregon Ctr Opt Mol & Quantum Sci, 1274 Univ Oregon, Eugene, OR 97403 USA
[2] Dept Phys, 1274 Univ Oregon, Eugene, OR 97403 USA
[3] NIST, Boulder, CO 80305 USA
[4] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
来源
OPTICS EXPRESS | 2018年 / 26卷 / 21期
基金
美国国家科学基金会;
关键词
OPTICAL WAVE-GUIDES; 2ND-HARMONIC GENERATION; INTERFEROMETRY; SELECTIVITY; EFFICIENT;
D O I
10.1364/OE.26.028091
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Photonic temporal modes (TMs) form a field-orthogonal basis set representing a continuous-variable degree of freedom that is in principle infinite dimensional, and create a promising resource for quantum information science and technology. The ideal quantum pulse gate (QPG) is a device that multiplexes and demultiplexes temporally orthogonal optical pulses that have the same carrier frequency, spatial mode, and polarization. The QPG is the chief enabling technology for usage of orthogonal temporal modes as a basis for high-dimensional quantum information storage and processing. The greatest hurdle for QPG implementation using nonlinear-optical, parametric processes with time-varying pump or control fields is the limitation on achievable temporal mode selectivity, defined as perfect TM discrimination combined with unity efficiency. We propose the use of pulsed nonlinear frequency conversion in an optical cavity having greatly different finesses for different frequencies to implement a nearly perfectly TM-selective QPG in a low-loss integrated-optics platform. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:28091 / 28103
页数:13
相关论文
共 50 条
  • [1] Sorting photon wave packets using temporal-mode interferometry based on multiple-stage quantum frequency conversion
    Reddy, D. V.
    Raymer, M. G.
    McKinstrie, C. J.
    PHYSICAL REVIEW A, 2015, 91 (01):
  • [2] Tomography and Purification of the Temporal-Mode Structure of Quantum Light
    Ansari, Vahid
    Donohue, John M.
    Allgaier, Markus
    Sansoni, Linda
    Brecht, Benjamin
    Roslund, Jonathan
    Treps, Nicolas
    Harder, Georg
    Silberhorn, Christine
    PHYSICAL REVIEW LETTERS, 2018, 120 (21)
  • [3] Temporal-mode measurement tomography of a quantum pulse gate
    Ansari, Vahid
    Harder, Georg
    Allgaier, Markus
    Brecht, Benjamin
    Silberhorn, Christine
    PHYSICAL REVIEW A, 2017, 96 (06)
  • [4] Universal quantum computation with temporal-mode bilayer square lattices
    Alexander, Rafael N.
    Yokoyama, Shota
    Furusawa, Akira
    Menicucci, Nicolas C.
    PHYSICAL REVIEW A, 2018, 97 (03)
  • [5] Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings
    Ansari, Vahid
    Donohue, John M.
    Brecht, Benjamin
    Silberhorn, Christine
    OPTICA, 2018, 5 (05): : 534 - 550
  • [6] Efficient sorting of quantum-optical wave packets by temporal-mode interferometry
    Reddy, D. V.
    Raymer, M. G.
    McKinstrie, C. J.
    OPTICS LETTERS, 2014, 39 (10) : 2924 - 2927
  • [7] Space-time exchanged symplectic integrator approach to temporal-mode selective optical three-wave mixing frequency conversion
    Nomura, Kenya
    Sako, Tokuei
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2023, 56 (09)
  • [8] Frequency stabilization of a mode-locked external cavity diode laser to a high-finesse cavity
    Xiong, Yihan
    Murphy, Sytil
    Carlsten, J. L.
    Repasky, Kevin S.
    OPTICAL ENGINEERING, 2007, 46 (05)
  • [9] Quantum frequency up-conversion with a cavity
    Bai Yun-Fei
    Zhai Shu-Qin
    Gao Jiang-Rui
    Zhang Jun-Xiang
    CHINESE PHYSICS B, 2011, 20 (08)
  • [10] Quantum frequency up-conversion with a cavity
    白云飞
    翟淑琴
    郜江瑞
    张俊香
    Chinese Physics B, 2011, (08) : 241 - 245