Uniqueness of the elastography inverse problem for incompressible nonlinear planar hyperelasticity

被引:15
|
作者
Ferreira, Elizabete Rodrigues [1 ,2 ]
Oberai, Assad A. [2 ]
Barbone, Paul E. [3 ]
机构
[1] Univ Libre Brussels, Dept Math, B-1050 Brussels, Belgium
[2] Rensselaer Polytech Inst, Mech Aerosp & Nucl Engn Dept, Troy, NY 12180 USA
[3] Boston Univ, Dept Mech Engn, Boston, MA 02215 USA
关键词
MAGNETIC-RESONANCE ELASTOGRAPHY; BREAST-TISSUE SAMPLES; STRAIN IMAGES; SOFT-TISSUE; ELASTICITY; RECONSTRUCTION; VISUALIZATION; DISPLACEMENT; DEFORMATIONS; PARAMETERS;
D O I
10.1088/0266-5611/28/6/065008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The uniqueness of several 2D inverse problems for incompressible nonlinear hyperelasticity is studied. These problems are motivated by elastography, in which one is given a measured deformation field in a 2D domain Omega and seeks to reconstruct the pointwise distribution of material parameters within Omega. Two classes of models are considered. The simpler class is material models characterized by a single material parameter exemplified by the Neo-Hookean model. The second class of material models considered is characterized by two material parameters, and includes a simplified Veronda-Westmann model, a Blatz model and a modified Blatz model. Consistent with the results in linear elasticity, we find that significantly fewer data are required to determine the material properties under plane stress conditions than under plane strain conditions. The results show that, roughly speaking, one needs one measured deformation for each material parameter sought under plane stress conditions, and twice as much data for plane strain conditions.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Quasiconvex relaxation of isotropic functions in incompressible planar hyperelasticity
    Martin, Robert J.
    Voss, Jendrik
    Neff, Patrizio
    Ghiba, Ionel-Dumitrel
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (05) : 2620 - 2631
  • [2] Local uniqueness for vortex patch problem in incompressible planar steady flow
    Cao, Daomin
    Guo, Yuxia
    Peng, Shuangjie
    Yan, Shusen
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 131 : 251 - 289
  • [3] Elastic modulus imaging: on the uniqueness and nonuniqueness of the elastography inverse problem in two dimensions
    Barbone, PE
    Gokhale, NH
    INVERSE PROBLEMS, 2004, 20 (01) : 283 - 296
  • [4] Solution of the nonlinear elasticity imaging inverse problem: The incompressible case
    Goenezen, Sevan
    Barbone, Paul
    Oberai, Assad A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (13-16) : 1406 - 1420
  • [5] The solution uniqueness of a inverse problem for a nonlinear hyperbolic equation in the rectangle
    Shcheglov, A.Yu.
    Vestnik Moskovskogo Universiteta. Ser. 15 Vychislitel'naya Matematika i Kibernetika, 1999, (01): : 11 - 13
  • [6] THE UNIQUENESS OF THE SOLUTION OF AN INVERSE PROBLEM OF NONLINEAR HEAT-CONDUCTION
    MUZYLEV, NV
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1985, 25 (05): : 43 - 47
  • [7] SOLUTION UNIQUENESS FOR HEAT-CONDUCTION NONLINEAR INVERSE PROBLEM
    KRIVOSHEJ, FA
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1977, (08): : 748 - 750
  • [8] Existence and uniqueness of a solution for a two dimensional nonlinear inverse diffusion problem
    Abtahi, M.
    Pourgholi, R.
    Shidfar, A.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (07) : 2462 - 2467
  • [9] Existence and uniqueness of an inverse problem for nonlinear Klein-Gordon equation
    Tekin, Ibrahim
    Mehraliyev, Yashar T.
    Ismailov, Mansur I.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (10) : 3739 - 3753
  • [10] Uniqueness of the reconstruction of three coefficients in a nonlinear heat transfer inverse problem
    Shcheglov, A.Yu.
    Vestnik Moskovskogo Universiteta. Ser. 15 Vychislitel'naya Matematika i Kibernetika, 2001, (02): : 13 - 18