G-Curvaton

被引:55
|
作者
Wang, Hua [3 ]
Qiu, Taotao [1 ,2 ,4 ,5 ]
Piao, Yun-Song [3 ]
机构
[1] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan
[2] Natl Taiwan Univ, Ctr Theoret Sci, Taipei 10617, Taiwan
[3] Chinese Acad Sci, Grad Univ, Coll Phys Sci, Beijing 100049, Peoples R China
[4] Natl Taiwan Univ, Leung Ctr Cosmol & Particle Astrophys, Taipei 106, Taiwan
[5] Chinese Acad Sci, Inst High Energy Phys, TPCSF, Beijing 100049, Peoples R China
关键词
INFLATIONARY UNIVERSE; NON-GAUSSIANITY; PERTURBATIONS; HORIZON; FLATNESS;
D O I
10.1016/j.physletb.2011.12.016
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this Letter, we study a curvaton model where the curvaton is acted by Galileon field. We calculate the power spectrum of fluctuation of G-Curvaton during inflation and discuss how it converts to the curvature perturbation after the end of inflation. We estimate the bispectrum of curvature perturbation induced, and show the dependence of non-Gaussianity on the parameters of model. It is found that our model can have sizable local and equilateral non-Gaussianities to up to O(10(2)), which is illustrated by an explicit example. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:11 / 21
页数:11
相关论文
共 50 条
  • [1] Runnings in the curvaton
    Kobayashi, Takeshi
    Takahashi, Tomo
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2012, (06):
  • [2] Hybrid curvaton
    Dimopoulos, Konstantinos
    Kohri, Kazunori
    Matsuda, Tomohiro
    PHYSICAL REVIEW D, 2012, 85 (12)
  • [3] The running curvaton
    Liu, Lei-Hua
    Xu, Wu-Long
    CHINESE PHYSICS C, 2020, 44 (08)
  • [4] Curvaton dynamics and the non-linearity parameters in the curvaton model
    Huang, Qing-Guo
    Wang, Yi
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2008, (09):
  • [5] Mimetic curvaton
    Zhang, Xin-zhe
    Liu, Lei-Hua
    Qiu, Taotao
    PHYSICAL REVIEW D, 2023, 107 (04)
  • [6] The running curvaton
    刘磊华
    许武龙
    Chinese Physics C, 2020, 44 (08) : 211 - 220
  • [7] Curvaton dynamics
    Dimopoulos, K
    Lazarides, G
    Lyth, DH
    de Austri, RR
    PHYSICAL REVIEW D, 2003, 68 (12)
  • [8] The running curvaton
    刘磊华
    许武龙
    Chinese Physics C, 2020, (08) : 211 - 220
  • [9] The Vector Curvaton
    Navarro, Andres A.
    Rodriguez, Yeinzon
    IX MEXICAN SCHOOL ON GRAVITATION AND MATHEMATICAL PHYSICS: COSMOLOGY FOR THE XXIST CENTURY, 2013, 1548 : 277 - 282
  • [10] Passive curvaton
    Lin, Chia-Min
    PHYSICS LETTERS B, 2013, 724 (1-3) : 22 - 26