Bioelectronic Energy Storage: A Pseudocapacitive Hydrogel Composed of Endogenous Biomolecules

被引:25
|
作者
Milroy, Craig A.
Manthiram, Arumugam
机构
来源
ACS ENERGY LETTERS | 2016年 / 1卷 / 04期
基金
美国国家科学基金会;
关键词
HYALURONIC-ACID; REDOX CENTERS; ELECTRODES; DOPAMINE; MELANIN; EUMELANIN; BATTERIES; POLYDOPAMINE; SPECTROSCOPY; NEUROMELANIN;
D O I
10.1021/acsenergylett.6b00334
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Advances in bioelectronics have produced implantable devices for in vivo biosensing and therapeutics, but batteries for implantable devices currently require bulky metal cases to sequester toxic electrolytes and immunogenic active materials; therefore, development of new materials is paramount for safety and miniaturization. Implantable batteries could be fully biocompatible if they exclusively comprised endogenous materials. Accordingly, we present an energy-storage material fabricated entirely from endogenous biomolecules via one-step carbodiimide conjugation of dopamine (DA) to hyaluronic acid (HA). The DAHA composite can be electropolymerized to create a pseudocapacitive biopolymer, p(DAHA), that exhibits catechol-quinone interconversion, stability, long-term electroactivity for 400 cycles, and high pseudocapacitance (up to similar to 900 F g(-1)) and discharge capacity (similar to 130 mAh g(-1) at similar to 10 A g(-1)). These characteristics predispose it for bioelectronic energy storage, i.e., as a supercapacitor or, when coupled with an implantable Ag/AgCl electrode, a biobattery with an operating voltage of similar to 0.85 V.
引用
收藏
页码:672 / 677
页数:6
相关论文
共 50 条
  • [1] Conducting Polymers for Pseudocapacitive Energy Storage
    Bryan, Aimee M.
    Santino, Luciano M.
    Lu, Yang
    Acharya, Shinjita
    D'Arcy, Julio M.
    CHEMISTRY OF MATERIALS, 2016, 28 (17) : 5989 - 5998
  • [2] Understanding pseudocapacitive energy storage in MXenes and oxides
    Jiang, De-en
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [3] DYNAMICAL ENERGY-STORAGE IN BIOMOLECULES
    CLAPP, RE
    BIOPHYSICAL JOURNAL, 1990, 57 (02) : A243 - A243
  • [4] Computational Screening of MXene Electrodes for Pseudocapacitive Energy Storage
    Zhan, Cheng
    Sun, Weiwei
    Kent, Paul R. C.
    Naguib, Michael
    Gogotsi, Yury
    Jiang, De-en
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (01): : 315 - 321
  • [5] Conjugated Polyelectrolytes: Underexplored Materials for Pseudocapacitive Energy Storage
    Quek, Glenn
    Roehrich, Brian
    Su, Yude
    Sepunaru, Lior
    Bazan, Guillermo C.
    ADVANCED MATERIALS, 2022, 34 (22)
  • [6] Organic materials as charge hosts for pseudocapacitive energy storage
    Yadav, Suman
    Ingle, Dhiraj Siddhartha
    Rao, Kotagiri Venkata
    Kurra, Narendra
    SUSTAINABLE ENERGY & FUELS, 2023, 7 (12) : 2802 - 2818
  • [7] Pseudocapacitive study of NiO nanomaterials for electrochemical energy storage
    Day, Alexis
    Adkins, Joshua
    Meda, Lamartine
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [8] Intercalation of Hydrogen in Perovskite Oxide for Pseudocapacitive Energy Storage
    Lin, Meng-Hua
    Lu, Ming-Yen
    Chou, Hung-Lung
    Wan, Gang
    Chen, Chia-Chin
    CHEMISTRY OF MATERIALS, 2023, 35 (24) : 10487 - 10494
  • [9] Models for energy and charge transport and storage in biomolecules
    Mingaleev, SF
    Christiansen, PL
    Gaididei, YB
    Johansson, M
    Rasmussen, KO
    JOURNAL OF BIOLOGICAL PHYSICS, 1999, 25 (01) : 41 - 63
  • [10] Models for Energy and Charge Transport and Storage in Biomolecules
    S.F. Mingaleev
    P.L. Christiansen
    Yu.B. Gaididei
    M. Johansson
    K.Ø. Rasmussen
    Journal of Biological Physics, 1999, 25 : 41 - 63