Domain decomposition solvers for large scale industrial finite element problems

被引:0
|
作者
Bjorstad, PE [1 ]
Koster, J
Krzyzanowski, P
机构
[1] Univ Bergen, Parallab, N-5020 Bergen, Norway
[2] Warsaw Univ, Inst Appl Math, PL-02097 Warsaw, Poland
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The European research project PARASOL aimed to design and develop a public domain library of scalable sparse matrix solvers for distributed memory computers. Parallab was a partner in the project and developed a domain decomposition code for solving large scale finite element problems in a robust, yet efficient way. Although the PARASOL project finished in June 1999, Parallab has continued the development of the solver. In this paper, we report on the present status of the solver and show its performance on some challenging industrial problems.
引用
收藏
页码:373 / 383
页数:11
相关论文
共 50 条
  • [1] Finite-Element Domain Decomposition Methods for Analysis of Large-Scale Electromagnetic Problems
    Xue, Ming-Feng
    Jin, Jian-Ming
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2014, 29 (12): : 990 - 1002
  • [2] A Parallel Randomized Finite Element Domain Decomposition Solver for Large-scale EM Problems
    Wang, Wei
    Vouvakis, Marinos N.
    2016 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, 2016, : 1125 - 1126
  • [3] Domain Decomposition Solvers for Frequency-Domain Finite Element Equations
    Copeland, Dylan
    Kolmbauer, Michael
    Langer, Ulrich
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XIX, 2011, 78 : 301 - +
  • [4] Domain decomposition solvers for nonlinear multiharmonic finite element equations
    Copeland, D. M.
    Langer, U.
    JOURNAL OF NUMERICAL MATHEMATICS, 2010, 18 (03) : 157 - 175
  • [5] Robust and Scalable Finite Element Domain Decomposition Solvers for CEM
    Nagar, Jogender
    Paraschos, Georgios N.
    Vouvakis, Marinos N.
    2013 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI), 2013, : 1624 - 1625
  • [6] Large scale finite element analysis with a Balancing Domain Decomposition method
    Shioya, R
    Ogino, M
    Kanayama, H
    Tagami, D
    PROGRESS IN EXPERIMENTAL AND COMPUTATIONAL MECHANICS IN ENGINEERING, 2003, 243-2 : 21 - 26
  • [7] Domain Decomposition Framework for Maxwell Finite Element Solvers and Application to PIC
    Crawford, Zane D.
    Ramachandran, O. H.
    O'Connor, Scott
    Dault, Daniel L.
    Luginsland, J.
    Shanker, B.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2024, 52 (01) : 168 - 179
  • [8] Robust and scalable domain decomposition solvers for unfitted finite element methods
    Badia, Santiago
    Verdugo, Francesc
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 344 : 740 - 759
  • [9] Finite-element-wise domain decomposition iterative solvers with polynomial preconditioning
    Liang, Yu
    Szularz, Marek
    Yang, Laurence T.
    MATHEMATICAL AND COMPUTER MODELLING, 2013, 58 (1-2) : 421 - 437
  • [10] Algebraic Multigrid Combined With Domain Decomposition for the Finite Element Analysis of Large Scattering Problems
    Aghabarati, Ali
    Webb, Jon P.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2015, 63 (01) : 404 - 408