The elimination of errors caused by shadow in fringe projection profilometry based on deep learning

被引:11
|
作者
Wang, Chenxing [1 ,2 ]
Pang, Qi [1 ,2 ]
机构
[1] Southeast Univ, Sch Automat, 2 Sipailou, Nanjing 210096, Peoples R China
[2] Southeast Univ, Minist Educ, Key Lab Measurement & Control Complex Syst Engn, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Fringe projection profilometry; Fringe image; Shadow repairment; FOURIER-TRANSFORM PROFILOMETRY; 3-D SHAPE MEASUREMENT; REMOVAL METHOD; PHASE ERROR; GRAY-CODE; RECONSTRUCTION; COMPENSATION; LIGHT;
D O I
10.1016/j.optlaseng.2022.107203
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The fringe projection profilometry (FPP) has been regarded as a classical and mature technique for 3D shape measurement. However, in practical applications, shadow is un-avoided in the imaging process and causes errors in many FPP systems. In this paper, the errors in FPP systems caused by shadow are first analyzed. Then, a direction-aware spatial context module based network is proposed for detecting the shadow regions of a fringe image. Further, a repairment method is developed based on a generative adversarial network combining some simple processes. The training datasets are rendered by a graphic software to easy the training of the networks. The proposed method can repair the shadow regions successfully with only one fringe image and so it can be applied in varieties of FPP systems. The feasibility and the accuracy of improved by the proposed method have been illustrated by abundant experiments.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Untrained deep learning-based fringe projection profilometry
    Yu, Haotian
    Han, Bowen
    Bai, Lianfa
    Zheng, Dongliang
    Han, Jing
    APL PHOTONICS, 2022, 7 (01)
  • [2] Near-infrared fringe projection profilometry based on deep learning
    Wang, Jinglei
    Li, Yixuan
    Wang, Mengke
    Zhang, Yanxin
    Jia, Zhe
    Zhang, Yuzhen
    AOPC 2021: NOVEL TECHNOLOGIES AND INSTRUMENTS FOR ASTRONOMICAL MULTI-BAND OBSERVATIONS, 2021, 12069
  • [3] Deep Learning-based Single-shot Fringe Projection Profilometry
    Zuo, Ruizhi
    Wei, Shuwen
    Wang, Yaning
    Kam, Michael
    Opfermann, Justin D.
    Hsieh, Michael H.
    Krieger, Axel
    Kang, Jin U.
    ADVANCED BIOMEDICAL AND CLINICAL DIAGNOSTIC AND SURGICAL GUIDANCE SYSTEMS XXII, 2024, 12831
  • [4] Untrained deep learning-based phase retrieval for fringe projection profilometry
    Yu, Haotian
    Chen, Xiaoyu
    Huang, Ruobing
    Bai, Lianfa
    Zheng, Dongliang
    Han, Jing
    OPTICS AND LASERS IN ENGINEERING, 2023, 164
  • [5] Wavelet based deep learning for depth estimation from single fringe pattern of fringe projection profilometry
    ZHU Xinjun
    HAN Zhiqiang
    SONG Limei
    WANG Hongyi
    WU Zhichao
    Optoelectronics Letters, 2022, 18 (11) : 699 - 704
  • [6] Deep learning-based fringe modulation-enhancing method for accurate fringe projection profilometry
    Yu, Haotian
    Zheng, Dongliang
    Fu, Jiaan
    Zhang, Yi
    Zuo, Chao
    Han, Jing
    OPTICS EXPRESS, 2020, 28 (15) : 21692 - 21703
  • [7] Wavelet based deep learning for depth estimation from single fringe pattern of fringe projection profilometry
    Zhu Xinjun
    Han Zhiqiang
    Song Limei
    Wang Hongyi
    Wu Zhichao
    OPTOELECTRONICS LETTERS, 2022, 18 (11) : 699 - 704
  • [8] Wavelet based deep learning for depth estimation from single fringe pattern of fringe projection profilometry
    Xinjun Zhu
    Zhiqiang Han
    Limei Song
    Hongyi Wang
    Zhichao Wu
    Optoelectronics Letters, 2022, 18 : 699 - 704
  • [9] Wavelet Analysis for Shadow Detection in Fringe Projection Profilometry
    Hani, Ahmad Fadzil M.
    Khoiruddin, Arwan Ahmad
    Walter, Nicolas
    Faye, Ibrahima
    2012 IEEE SYMPOSIUM ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ISIEA 2012), 2012,
  • [10] Single-shot fringe projection profilometry based on deep learning and computer graphics
    Wang, Fanzhou
    Wang, Chenxing
    Guan, Qingze
    OPTICS EXPRESS, 2021, 29 (06): : 8024 - 8040