Deep Learning for Identification of Adverse Effect Mentions in Twitter Data

被引:0
|
作者
Barry, Paul [1 ]
Uzuner, Ozlem [1 ]
机构
[1] George Mason Univ, Fairfax, VA 22030 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Social Media Mining for Health Applications (SMM4H) Adverse Effect Mentions Shared Task challenges participants to accurately identify spans of text within a tweet that correspond to Adverse Effects (AEs) resulting from medication usage (Weissenbacher et al., 2019). This task features a training data set of 2,367 tweets, in addition to a 1,000 tweet evaluation data set. The solution presented here features a bidirectional Long Shortterm Memory Network (bi-LSTM) for the generation of character-level embeddings. It uses a second bi-LSTM trained on both character and token level embeddings to feed a Conditional Random Field (CRF) which provides the final classification. This paper further discusses the deep learning algorithms used in our solution.
引用
收藏
页码:99 / 101
页数:3
相关论文
共 50 条
  • [1] DeepADEMiner: a deep learning pharmacovigilance pipeline for extraction and normalization of adverse drug event mentions on Twitter
    Magge, Arjun
    Tutubalina, Elena
    Miftahutdinov, Zulfat
    Alimova, Ilseyar
    Dirkson, Anne
    Verberne, Suzan
    Weissenbacher, Davy
    Gonzalez-Hernandez, Graciela
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2021, 28 (10) : 2184 - 2192
  • [2] Robust Identification of Figurative Language in Personal Health Mentions on Twitter
    Naseem U.
    Kim J.
    Khushi M.
    Dunn A.G.
    IEEE Transactions on Artificial Intelligence, 2023, 4 (02): : 362 - 372
  • [3] Mining Twitter for Adverse Drug Reaction Mentions: A Corpus and Classification Benchmark
    Ginn, Rachel
    Pimpalkhute, Pranoti
    Nikfarjam, Azadeh
    Patki, Apurv
    O'Connor, Karen
    Sarker, Abeed
    Smith, Karen
    Gonzalez, Graciela
    LREC 2014 - NINTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2014,
  • [4] Using machine learning and deep learning methods to find mentions of adverse drug reactions in social media
    Lopez-Ubeda, Pilar
    Carlos Diaz-Galiano, Manuel
    Martin-Valdivia, Maria-Teresa
    Alfonso Urena-Lopez, L.
    SOCIAL MEDIA MINING FOR HEALTH APPLICATIONS (#SMM4H) WORKSHOP & SHARED TASK, 2019, : 102 - 106
  • [5] Deep Learning for Depression Detection Using Twitter Data
    Khafaga, Doaa Sami
    Auvdaiappan, Maheshwari
    Deepa, K.
    Abouhawwash, Mohamed
    Karim, Faten Khalid
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 36 (02): : 1301 - 1313
  • [6] Emotion Identification in Twitter Using Deep Learning Based Methodology
    Mahimaidoss, Naveen Kumar
    Sathianesan, Godfrey Winster
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2024, 19 (03) : 1891 - 1908
  • [7] Emotion Identification in Twitter Using Deep Learning Based Methodology
    Naveen Kumar Mahimaidoss
    Godfrey Winster Sathianesan
    Journal of Electrical Engineering & Technology, 2024, 19 : 1891 - 1908
  • [8] Detecting and Encoding Mentions of Suspected Adverse Events in Twitter Using Natural Language Processing
    Ellenius, Johan
    Gattepaille, Lucie M.
    Vidlin, Sara
    Pierce, Carrie
    Bergvall, Tomas
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2017, 26 : 36 - 37
  • [9] Deep Sentiment Learning for Measuring Similarity Recommendations in Twitter Data
    Manikandan, S.
    Dhanalakshmi, P.
    Rajeswari, K. C.
    Rani, A. Delphin Carolina
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 34 (01): : 182 - 191
  • [10] Deep Learning for Identification of Adverse Drug Reaction Relations
    Florez, Edson
    Precioso, Frederic
    Pighetti, Romaric
    Riveill, Michel
    2019 INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING SYSTEMS (SPSS 2019), 2019, : 149 - 153