Countable abelian group actions and hyperfinite equivalence relations

被引:29
|
作者
Gao, Su [1 ]
Jackson, Steve [1 ]
机构
[1] Univ N Texas, Dept Math, Denton, TX 76203 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00222-015-0603-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An equivalence relation E on a standard Borel space is hyperfinite if E is the increasing union of countably many Borel equivalence relations where all -equivalence classs are finite. In this article we establish the following theorem: if a countable abelian group acts on a standard Borel space in a Borel manner then the orbit equivalence relation is hyperfinite. The proof uses constructions and analysis of Borel marker sets and regions in the space This technique is also applied to a problem of finding Borel chromatic numbers for invariant Borel subspaces of .
引用
收藏
页码:309 / 383
页数:75
相关论文
共 50 条