A direct borohydride fuel cell employing Prussian Blue as mediated electron-transfer hydrogen peroxide reduction catalyst

被引:71
|
作者
Selvarani, G. [1 ]
Prashant, S. K. [1 ]
Sahu, A. K. [1 ]
Sridhar, P. [1 ]
Pitchumani, S. [1 ]
Shukla, A. K. [1 ,2 ]
机构
[1] Cent Electrochem Res Inst, Karaikkudi 630006, Tamil Nadu, India
[2] Indian Inst Sci, Solid State & Struct Chem Unit, Bangalore 560012, Karnataka, India
关键词
direct borohydride fuel cell; hydrogen peroxide; Prussian blue; mediated electron-transfer; cetyl-trimethyl ammonium bromide;
D O I
10.1016/j.jpowsour.2007.11.115
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A direct borohydride-hydrogen peroxide fuel cell employing carbon-supported Prussian Blue (PB) as mediated electron-transfer cathode catalyst is reported. While operating at 30 degrees C, the direct borohydride-hydrogen peroxide fuel cell employing carbon-supported PB cathode catalyst shows superior performance with the maximum output power density of 68 mW cm(-2) at an operating voltage of 1.1 V compared to direct borohydride-hydrogen peroxide fuel cell employing the conventional gold-based cathode with the maximum output power density of 47 mW cm(-2) at an operating voltage of 0.7 V. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Analysis (EDAX) suggest that anchoring of Cetyl-Trimethyl Ammonium Bromide (CTAB) as a surfactant moiety on carbon-supported PB affects the catalyst morphology. Polarization studies on direct borohydride-hydrogen peroxide fuel cell with carbon-supported CTAB-anchored PB cathode exhibit better performance with the maximum output power density of 50 mW cm(-2) at an operating voltage of 1 V than the direct borohydride-hydrogen peroxide fuel cell with carbon-supported Prussian Blue without CTAB with the maximum output power density of 29 mW cm(-2) at an operating voltage of 1 V. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:86 / 91
页数:6
相关论文
共 50 条
  • [1] Direct borohydride/peroxide fuel cells using Prussian Blue cathodes
    Santos, D. M. F.
    Saturnino, P. G.
    Lobo, R. F. M.
    Sequeira, C. A. C.
    JOURNAL OF POWER SOURCES, 2012, 208 : 131 - 137
  • [2] A direct methanol-hydrogen peroxide fuel cell with a Prussian Blue cathode
    Yan, X. H.
    Zhao, T. S.
    An, L.
    Zhao, G.
    Shi, L.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (09) : 5135 - 5140
  • [3] An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant
    Choudhury, NA
    Raman, RK
    Sampath, S
    Shukla, AK
    JOURNAL OF POWER SOURCES, 2005, 143 (1-2) : 1 - 8
  • [4] Passive Direct Methanol-Hydrogen Peroxide Fuel Cell with Reduced Graphene Oxide-Supported Prussian Blue as Catalyst
    Lu, Biaowu
    Yuan, Wei
    Su, Xiaoqing
    Zhuang, Ziyi
    Ke, Yuzhi
    Tang, Yong
    ENERGY TECHNOLOGY, 2020, 8 (03)
  • [5] Performance of Nanosized Au Particle as a Cathode Catalyst for Direct Borohydride-hydrogen Peroxide Fuel Cell
    Wei Jian-Liang
    Wang Xian-You
    Wang Hong
    Yang Shun-Yi
    Dai Chun-Ling
    Pei Fu
    ACTA CHIMICA SINICA, 2008, 66 (24) : 2675 - 2680
  • [6] A direct borohydride/hydrogen peroxide fuel cell with reduced alkali crossover
    Raman, R. K.
    Shukla, A. K.
    FUEL CELLS, 2007, 7 (03) : 225 - 231
  • [7] A Sodium Borohydride-Hydrogen Peroxide Fuel Cell Employing a Bipolar Membrane Electrolyte
    Reeve, R. W.
    FUEL CELL SEMINAR 2011, 2012, 42 (01): : 117 - 129
  • [8] A membraneless hydrogen peroxide fuel cell using Prussian Blue as cathode material
    Shaegh, Seyed Ali Mousavi
    Nam-Trung Nguyen
    Ehteshami, Seyyed Mohsen Mousavi
    Chan, Siew Hwa
    ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (08) : 8225 - 8228
  • [9] A calibrated hydrogen-peroxide direct-borohydride fuel cell model
    Stroman, Richard O.
    Jackson, Gregory S.
    Garsany, Yannick
    Swider-Lyons, Karen
    JOURNAL OF POWER SOURCES, 2014, 271 : 421 - 430
  • [10] A Thin-Film Direct Hydrogen Peroxide/Borohydride Micro Fuel Cell
    Wang, Yonggang
    Guo, Ziyang
    Xia, Yongyao
    ADVANCED ENERGY MATERIALS, 2013, 3 (06) : 713 - 717