Bilateral obstacle optimal control for a quasilinear elliptic variational inequality

被引:5
|
作者
Chen, QH [1 ]
Ye, YQ [1 ]
机构
[1] Shanghai Univ Finance & Econ, Dept Appl Math, Shanghai 200433, Peoples R China
关键词
bilateral variational inequality; existence; necessary condition; obstacle control; quasilinear elliptic equations;
D O I
10.1081/NFA-200067294
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider an obstacle control problem where the state satisfies a quasilinear elliptic bilateral variational inequality and the control functions are the upper and the lower obstacles. Existence and necessary conditions for the optimal control are established.
引用
收藏
页码:303 / 320
页数:18
相关论文
共 50 条
  • [1] Bilateral obstacle optimal control for a quasilinear elliptic variational inequality with a source term
    Ye, Yuquan
    Chan, Chi Kin
    Leung, B. P. K.
    Chen, Q.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (05) : 1170 - 1184
  • [2] Optimal control of the obstacle in a quasilinear elliptic variational inequality
    Ye, YQ
    Chen, Q
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 294 (01) : 258 - 272
  • [3] Optimal control of the obstacle for an elliptic variational inequality
    Adams, DR
    Lenhart, SM
    Yong, J
    APPLIED MATHEMATICS AND OPTIMIZATION, 1998, 38 (02): : 121 - 140
  • [4] Optimal Control of the Obstacle for an Elliptic Variational Inequality
    D. R. Adams
    S. M. Lenhart
    J. Yong
    Applied Mathematics and Optimization, 1998, 38 : 121 - 140
  • [5] Optimal obstacle control for a quacsilinear elliptic variational inequality
    Chen, Q
    Ye, Y
    8TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS, AND INFORMATICS, VOL XVI, PROCEEDINGS, 2004, : 482 - 485
  • [6] Double obstacle control problem for a quasilinear elliptic variational inequality with source term
    Chen, Qihong
    Chu, Delin
    Tan, Roger C. E.
    Ye, Yuquan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 18 : 108 - 120
  • [7] Optimal control of obstacle for quasi-linear elliptic variational bilateral problems
    Chen, QH
    Chu, DL
    Tan, RCE
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2005, 44 (03) : 1067 - 1080
  • [8] Optimal control of the obstacle for a parabolic variational inequality
    Adams, DR
    Lenhart, S
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 268 (02) : 602 - 614
  • [9] Optimal control and approximation for elliptic bilateral obstacle problems
    Liu, Jinjie
    Yang, Xinmin
    Zeng, Shengda
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 102
  • [10] Stability of the solution to a quasilinear elliptic variational inequality
    Hunan Shifan Daxue Ziran Kexue Xuebao, 1 (12):