High thermopower of mechanically stretched single-molecule junctions

被引:45
|
作者
Tsutsui, Makusu [1 ]
Morikawa, Takanori [1 ]
He, Yuhui [1 ]
Arima, Akihide [1 ]
Taniguchi, Masateru [1 ]
机构
[1] Osaka Univ, Inst Sci & Ind Res, Ibaraki, Osaka 5670047, Japan
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
关键词
TRANSPORT JUNCTIONS; THERMOELECTRICITY; CONDUCTANCE; BENZENEDITHIOL; COLLOQUIUM;
D O I
10.1038/srep11519
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Metal-molecule-metal junction is a promising candidate for thermoelectric applications that utilizes quantum confinement effects in the chemically defined zero-dimensional atomic structure to achieve enhanced dimensionless figure of merit ZT. A key issue in this new class of thermoelectric nanomaterials is to clarify the sensitivity of thermoelectricity on the molecular junction configurations. Here we report simultaneous measurements of the thermoelectric voltage and conductance on Au-1,4-benzenedithiol (BDT)-Au junctions mechanically-stretched in-situ at subnanoscale. We obtained the average single-molecule conductance and thermopower of 0.01 G(0) and 15 mu V/K, respectively, suggesting charge transport through the highest occupied molecular orbital. Meanwhile, we found the single-molecule thermoelectric transport properties extremely-sensitive to the BDT bridge configurations, whereby manifesting the importance to design the electrode-molecule contact motifs for optimizing the thermoelectric performance of molecular junctions.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] High thermopower of mechanically stretched single-molecule junctions
    Makusu Tsutsui
    Takanori Morikawa
    Yuhui He
    Akihide Arima
    Masateru Taniguchi
    Scientific Reports, 5
  • [2] Mechanically Tuned Thermopower of Single-Molecule Junctions
    Fujii, Shintaro
    Montes, Enrique
    Cho, Haruna
    Yue, Yi
    Koike, Masaaki
    Nishino, Tomoaki
    Vazquez, Hector
    Kiguchi, Manabu
    ADVANCED ELECTRONIC MATERIALS, 2022, 8 (12)
  • [3] Communication: Length-dependent thermopower of single-molecule junctions
    Zimbovskaya, Natalya A.
    JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (22):
  • [4] Quantum interference enhanced thermopower in single-molecule thiophene junctions
    Hang Chen
    Yaorong Chen
    Hewei Zhang
    Wenqiang Cao
    Chao Fang
    Yicheng Zhou
    Zongyuan Xiao
    Jia Shi
    Wenbo Chen
    Junyang Liu
    Wenjing Hong
    Chinese Chemical Letters, 2022, 33 (01) : 523 - 526
  • [5] Enhancing the thermopower of single-molecule junctions by edge substitution effects
    Qi, Qiang
    Tian, Guangjun
    Ma, Liang
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (15) : 11340 - 11346
  • [6] Heat dissipation and its relation to thermopower in single-molecule junctions
    Zotti, L. A.
    Buerkle, M.
    Pauly, F.
    Lee, W.
    Kim, K.
    Jeong, W.
    Asai, Y.
    Reddy, P.
    Cuevas, J. C.
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [7] Intermolecular coupling enhanced thermopower in single-molecule diketopyrrolopyrrole junctions
    Chao Fang
    Renad Almughathawi
    Qingqing Wu
    Wenqiang Cao
    Hang Chen
    Songjun Hou
    Yu Gu
    Hewei Zhang
    Yi Zhao
    Jueting Zheng
    Guopeng Li
    Jia Shi
    Junyang Liu
    Bing-Wei Mao
    Zitong Liu
    Colin J.Lambert
    Wenjing Hong
    National Science Open, 2023, 2 (01) : 16 - 26
  • [8] Quantum interference enhanced thermopower in single-molecule thiophene junctions
    Chen, Hang
    Chen, Yaorong
    Zhang, Hewei
    Cao, Wenqiang
    Fang, Chao
    Zhou, Yicheng
    Xiao, Zongyuan
    Shi, Jia
    Chen, Wenbo
    Liu, Junyang
    Hong, Wenjing
    CHINESE CHEMICAL LETTERS, 2022, 33 (01) : 523 - 526
  • [9] An electrostatic gate for mechanically controlled single-molecule junctions
    Ballmann, Stefan
    Weber, Heiko B.
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [10] Electronic conductance and thermopower of single-molecule junctions of oligo(phenyleneethynylene) derivatives
    Dekkiche, Herve
    Gemma, Andrea
    Tabatabaei, Fatemeh
    Batsanov, Andrei S.
    Niehaus, Thomas
    Gotsmann, Bernd
    Bryce, Martin R.
    NANOSCALE, 2020, 12 (36) : 18908 - 18917