Combination of Nano-Hydroxyapatite with Stem Cells for Bone Tissue Engineering

被引:29
|
作者
Venkatesan, Jayachandran [1 ]
Lowe, Baboucarr [2 ,3 ]
Anil, Sukumaran [4 ]
Kim, Se-Kwon [2 ,3 ]
Shim, Min Suk [1 ]
机构
[1] Lncheon Natl Univ, Div Bioengn, Inchon 406772, South Korea
[2] Pukyong Natl Univ, Marine Bioproc Res Ctr, Busan 608737, South Korea
[3] Pukyong Natl Univ, Dept Marine Bioconvergence Sci, Busan 608737, South Korea
[4] Jazan Univ, Coll Dent, POB 114, Jazan 45142, Saudi Arabia
基金
新加坡国家研究基金会;
关键词
Biomaterials; Scaffolds; Tissue Regeneration; Polymers; Nanotechnology; HUMAN TRABECULAR BONE; GROWTH-FACTOR DELIVERY; HUMAN ADIPOSE-TISSUE; HUMAN UC BLOOD; OF-THE-ART; OSTEOGENIC DIFFERENTIATION; IN-VITRO; COMPOSITE SCAFFOLDS; CHONDROGENIC DIFFERENTIATION; OSTEOBLAST DIFFERENTIATION;
D O I
10.1166/jnn.2016.12730
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Tissue engineering seeks to exploit functional biomaterials and engineer them to serve as artificial templates that promote the regeneration of tissues and damaged organs. Engineered scaffold materials recapitulate the extracellular matrix and provide cells with information essential for tissue development. Nanotechnologies make use of the material at the nanoscale for targeted interactions at molecular levels and deliver biochemical cues for cell growth required for tissue formation. In bone tissue engineering, nano-hydroxyapatite (nHA), which is a calcium phosphate-based material, is extensively used as a bone defect substitute to mimic the natural bioceramic portion of bone. nHA can be functionalized in the form of composite scaffolds along with other polymers, ceramic, and growth factors to enable bone tissue regeneration. In addition, the material directs stem cell differentiation into specific lineages. This stem cell-based therapy is a prominent approach in organ development and tissue regeneration. Here, we examine nHA interactions with stem cells in the form of designed scaffolds and offer important considerations about the fundamental challenges and prospects for its application in bone tissue engineering.
引用
收藏
页码:8881 / 8894
页数:14
相关论文
共 50 条
  • [1] Nano-hydroxyapatite and nano-hydroxyapatite/zinc oxide scaffold for bone tissue engineering application
    Heidari, Fatemeh
    Bazargan-Lari, Reza
    Razavi, Mehdi
    Fahimipour, Farahnaz
    Vashaee, Daryoosh
    Tayebi, Lobat
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2020, 17 (06) : 2752 - 2761
  • [2] Nano-hydroxyapatite: A Driving Force for Bone Tissue Engineering
    Rajula, M. Prem Blaisie
    Narayanan, Vivek
    Venkatasubbu, G. Devanand
    Mani, Rekha Chandra
    Sujana, A.
    JOURNAL OF PHARMACY AND BIOALLIED SCIENCES, 2021, 13 (05): : 11 - 14
  • [3] Nano-hydroxyapatite/polymer composite scaffold for bone tissue engineering
    Wang, Huanan
    Li, Yubao
    Zuo, Yi
    Cheng, Lin
    Wang, Yuanyuan
    Li, Hong
    BIOCERAMICS, VOL 19, PTS 1 AND 2, 2007, 330-332 : 365 - +
  • [4] Nano-Hydroxyapatite/Cellulose composite scaffold for bone tissue engineering
    Petrauskaite, O.
    Liesiene, J.
    Santos, C.
    Gomes, P. S.
    Garcia, M.
    Fernandes, M. H.
    Almeida, M. M.
    Costa, M. E. V.
    Juodzbalys, G.
    Daugela, P.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2012, 6 : 34 - 34
  • [5] Polyphosphazene/nano-hydroxyapatite composite microsphere scaffolds for bone tissue engineering
    Nukavarapu, Syam P.
    Kumbar, Sangamesh G.
    Brown, Justin L.
    Krogman, Nicholas R.
    Weikel, Arlin L.
    Hindenlang, Mark D.
    Nair, Lakshmi S.
    Allcock, Harry R.
    Laurencin, Cato T.
    BIOMACROMOLECULES, 2008, 9 (07) : 1818 - 1825
  • [6] Production of Bioactive Nano-Hydroxyapatite/Polysaccharide Composites for Bone Tissue Engineering
    Daniel-da-Silva, A. L.
    Gil, A. M.
    Correia, R. N.
    ADVANCED MATERIALS FORUM IV, 2008, 587-588 : 22 - +
  • [7] Biomimetic multicomponent polysaccharide/nano-hydroxyapatite composites for bone tissue engineering
    Li, Junjie
    Sun, Hong
    Sun, Da
    Yao, Yuli
    Yao, Fanglian
    Yao, Kangde
    CARBOHYDRATE POLYMERS, 2011, 85 (04) : 885 - 894
  • [8] Nano-Hydroxyapatite Composite Biomaterials for Bone Tissue Engineering-A Review
    Venkatesan, Jayachandran
    Kim, Se-Kwon
    JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2014, 10 (10) : 3124 - 3140
  • [9] Synthesis and Characterization of Naringin Functionalized Nano-Hydroxyapatite for Bone Tissue Engineering
    Rajula, M. Prem B.
    Narayanan, Vivek
    Venkatasubbu, G. Devanand
    Prema, D.
    Ravishankar, P. L.
    Mani, Rekha
    JOURNAL OF PHARMACY AND BIOALLIED SCIENCES, 2023, 15 : S372 - S376
  • [10] Nano-hydroxyapatite for use in bone tissue repair
    D'Elia, N. L.
    Gravina, A. N.
    Laiuppa, J. A.
    Santillan, G. E.
    Messina, P. V.
    BONE, 2015, 71 : 260 - 260