The cover time of the giant component of a random graph

被引:39
|
作者
Cooper, Colin [2 ]
Frieze, Alan [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] Kings Coll London, Dept Comp Sci, London WC2R 2LS, England
关键词
cover time; random graphs; giant component;
D O I
10.1002/rsa.20201
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study the cover time of a random walk on the largest component of the random graph G(n,p). We determine its value up to a factor 1 + o(1) whenever np = c > 1, c = O(ln n). In particular, we show that the cover time is not monotone for c = Theta(ln n). We also determine the cover time of the k-cores, k >= 2. (c) 2008 Wiley Periodicals, Inc.
引用
收藏
页码:401 / 439
页数:39
相关论文
共 50 条
  • [1] The Cover Time of the Giant Component of a Random Graph (vol 32, pg 401, 2008)
    Cooper, Colin
    Frieze, Alan
    RANDOM STRUCTURES & ALGORITHMS, 2009, 34 (02) : 300 - 304
  • [2] The Mixing Time of the Giant Component of a Random Graph
    Benjamini, Itai
    Kozma, Gady
    Wormald, Nicholas
    RANDOM STRUCTURES & ALGORITHMS, 2014, 45 (03) : 383 - 407
  • [3] Anatomy of a Young Giant Component in the Random Graph
    Ding, Jian
    Kim, Jeong Han
    Lubetzky, Eyal
    Peres, Yuval
    RANDOM STRUCTURES & ALGORITHMS, 2011, 39 (02) : 139 - 178
  • [4] Giant component of the soft random geometric graph
    Penrose, Mathew D.
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2022, 27
  • [5] Size of the giant component in a random geometric graph
    Ganesan, Ghurumuruhan
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2013, 49 (04): : 1130 - 1140
  • [6] The Giant Component in a Random Subgraph of a Given Graph
    Chung, Fan
    Horn, Paul
    Lu, Linyuan
    ALGORITHMS AND MODELS FOR THE WEB-GRAPH, PROCEEDINGS, 2009, 5427 : 38 - +
  • [7] Revealing the microstructure of the giant component in random graph ensembles
    Tishby, Ido
    Biham, Ofer
    Katzav, Eytan
    Kuhn, Reimer
    PHYSICAL REVIEW E, 2018, 97 (04)
  • [8] On a random graph with immigrating vertices: Emergence of the giant component
    Aldous, DJ
    Pittel, B
    RANDOM STRUCTURES & ALGORITHMS, 2000, 17 (02) : 79 - 102
  • [9] The evolution of the mixing rate of a simple random walk on the giant component of a random graph
    Fountoulakis, N.
    Reed, B. A.
    RANDOM STRUCTURES & ALGORITHMS, 2008, 33 (01) : 68 - 86
  • [10] Avoidance of a giant component in half the edge set of a random graph
    Bohman, T
    Frieze, A
    Wormald, NC
    RANDOM STRUCTURES & ALGORITHMS, 2004, 25 (04) : 432 - 449