Spatiotemporal segmentation of MR image sequence based on hierarchical analysis

被引:0
|
作者
de Carvalho, MAG [1 ]
Lotufo, RD [1 ]
Couprie, M [1 ]
机构
[1] Univ Estadual Campinas, DCA, FEEC, BR-13083970 Campinas, SP, Brazil
关键词
D O I
10.1109/ISSPA.2003.1224794
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a technique is described to segment blood volume of the left ventricle on MR image sequences based on graph representation. First, watershed transform is used to build an indexed hierarchy represented by a set of nested partitions of the image. The segmentation is based on two operations, the addition and suppression of classes or regions of the indexed hierarchy. These operations delete or include classes selected automatically and hierarchically according to centroid distance and grayscale criteria. Finally, we show experimental results and a preliminary comparison with the manual segmentation for one sequence of magnetic resonance images. The images are obtained from the informatics division of Instituto do Corac (a) over tildeo de S (a) over tildeo Paulo (InCor).
引用
收藏
页码:677 / 680
页数:4
相关论文
共 50 条
  • [1] Image sequence processing using spatiotemporal segmentation
    Wu, GK
    Reed, TR
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 1999, 9 (05) : 798 - 807
  • [2] HIERARCHICAL MORPHOLOGICAL SEGMENTATION FOR IMAGE SEQUENCE CODING
    SALEMBIER, P
    PARDAS, M
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 1994, 3 (05) : 639 - 651
  • [3] Regions tracking in ventricle MR sequence based on hierarchical analysis
    De Carvalho, MAG
    Couprie, M
    Lotufo, RD
    SIBGRAPI 2002: XV BRAZILIAN SYMPOSIUM ON COMPUTER GRAPHICS AND IMAGE PROCESSING, PROCEEDINGS, 2002, : 410 - 410
  • [4] An Automatic Cardiac Segmentation Framework Based on Multi-sequence MR Image
    Liu, Yashu
    Wang, Wei
    Wang, Kuanquan
    Ye, Chengqin
    Luo, Gongning
    STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: MULTI-SEQUENCE CMR SEGMENTATION, CRT-EPIGGY AND LV FULL QUANTIFICATION CHALLENGES, 2020, 12009 : 220 - 227
  • [5] Brain MR perfusion image segmentation using independent component analysis and hierarchical clustering
    Lu, Chia-Fung
    Chou, Yen-Chun
    Guo, Wan-Yuo
    Wu, Yu-Te
    2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 5547 - +
  • [6] Interactive analysis of hierarchical image segmentation
    Tilton, JC
    Lawrence, WT
    IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 733 - 735
  • [7] Image Hierarchical Segmentation Based on a GHSOM
    Jose Palorno, Esteban
    Dominguez, Enrique
    Marcos Luque, Rafael
    Munoz, Jose
    NEURAL INFORMATION PROCESSING, PT 1, PROCEEDINGS, 2009, 5863 : 743 - 750
  • [8] Image segmentation based on hierarchical mapping
    Junda, A
    Chitsobhuk, O
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 215 - 218
  • [9] MR brain image segmentation by growing hierarchical SOM and probability clustering
    Ortiz, A.
    Gorriz, J. M.
    Ramirez, J.
    Salas-Gonzalez, D.
    ELECTRONICS LETTERS, 2011, 47 (10) : 585 - 586
  • [10] A Hierarchical Segmentation Tree for Superpixel-based Image Segmentation
    Gu, Xianbin
    Deng, Jeremiah D.
    Purvis, Martin K.
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ), 2016, : 220 - 225