Plasma electrolytic oxidation of titanium in heteropolytungstate acids

被引:53
|
作者
Stojadinovic, S. [1 ]
Vasilic, R. [2 ]
Petkovic, M. [1 ]
Zekovic, Lj [1 ]
机构
[1] Univ Belgrade, Fac Phys, Belgrade 11000, Serbia
[2] Educons Univ, Fac Environm Governance & Corp Responsibil, Vojvode Putnika Bb, Sremska Kamenic, Serbia
来源
SURFACE & COATINGS TECHNOLOGY | 2011年 / 206卷 / 2-3期
关键词
Titanium; Plasma electrolytic oxidation (PEO); Heteropolytungstate acids; Optical emission spectroscopy; WO3; OXIDE-FILMS; 12-TUNGSTOPHOSPHORIC ACID; ALUMINUM; COATINGS; ALLOYS; ANODIZATION; LAYERS;
D O I
10.1016/j.surfcoat.2011.07.090
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This article is a review of our recent research of plasma electrolytic oxidation (PEO) process of titanium in heteropolytungstate acids (12-tungstosilicic acid and 12-tungstophosphoric acid). It has been detected that spatial density of microdischarges is the highest in the early stage of the PEO process, while the percentage of oxide coating area covered by active discharge sites decreases with PEO time. The elements and their ionization stages present in PEO microdischarges are identified using optical emission spectroscopy technique. The spectral line shape analysis of hydrogen Balmer line H-beta (486.13 nm) indicates presence of two types of microdischarges during PEO. The discharges are characterized by relatively low electron number densities of N-e approximate to 0.8 x 10(15) cm(-3) and N-e approximate to 2.1 x 10(16) cm(-3). Oxide coatings formed by PEO process were characterized by AFM, SEM-EDX and XRD. The elemental components of PEO coatings are Ti, W and O. The oxide coatings are partly crystallized and mainly composed of WO3 and anatase. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:575 / 581
页数:7
相关论文
共 50 条
  • [1] Use of Organic Acids as Additives for Plasma Electrolytic Oxidation (PEO) of Titanium
    Ceriani, Federica
    Casanova, Luca
    Ormellese, Marco
    COATINGS, 2024, 14 (06)
  • [2] Plasma electrolytic oxidation of Titanium Aluminides
    Morgenstern, R.
    Sieber, M.
    Grund, T.
    Lampke, T.
    Wielage, B.
    18TH CHEMNITZ SEMINAR ON MATERIALS ENGINEERING, 2016, 118
  • [3] Initial stages of plasma electrolytic oxidation of titanium
    Teh, TH
    Berkani, A
    Mato, S
    Skeldon, P
    Thompson, GE
    Habazaki, H
    Shimizu, K
    CORROSION SCIENCE, 2003, 45 (12) : 2757 - 2768
  • [4] Investigation of the plasma electrolytic oxidation mechanism of titanium
    Mortazavi, Golsa
    Jiang, Jiechao
    Meletis, Efstathios, I
    APPLIED SURFACE SCIENCE, 2019, 488 : 370 - 382
  • [5] Plasma electrolytic oxidation of titanium and improvement in osseointegration
    Chung, Chi-Jen
    Su, Rein-Teng
    Chu, Hou-Jen
    Chen, Hsien-Te
    Tsou, Hsi-Kai
    He, Ju-Liang
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2013, 101B (06) : 1023 - 1030
  • [6] Effect of Chloride Ions in Plasma Electrolytic Oxidation of Titanium
    Aliasghari, S.
    Hashimoto, T.
    Skeldon, P.
    Thompson, G. E.
    ECS ELECTROCHEMISTRY LETTERS, 2014, 3 (05) : C17 - C20
  • [7] Characterization of the plasma electrolytic oxidation of titanium in sodium metasilicate
    Stojadinovic, S.
    Vasilic, R.
    Petkovic, M.
    Kasalica, B.
    Belca, I.
    Zekic, A.
    Zekovic, L. J.
    APPLIED SURFACE SCIENCE, 2013, 265 : 226 - 233
  • [8] Characterization of the surface layers formed on titanium by plasma electrolytic oxidation
    Krupa, Danuta
    Baszkiewicz, Jacek
    Zdunek, Joanna
    Smolik, Jerzy
    Slomka, Zbigniew
    Sobczak, Janusz W.
    SURFACE & COATINGS TECHNOLOGY, 2010, 205 (06): : 1743 - 1749
  • [9] Sealing of porous titanium oxides produced by plasma electrolytic oxidation
    Casanova, Luca
    Belotti, Nicola
    Pedeferri, MariaPia
    Ormellese, Marco
    Materials and Corrosion, 2021, 72 (12) : 1894 - 1898
  • [10] Biofunctional surfaces by plasma electrolytic oxidation on titanium biomedical alloys
    Yavari, S. A.
    Necula, B. S.
    Fratila-Apachitei, L. E.
    Duszczyk, J.
    Apachitei, I.
    SURFACE ENGINEERING, 2016, 32 (06) : 411 - 417