Macronutrient, soil organic carbon, and earthworm distribution in subtropical pastures on an andisol with and without long-term fertilization

被引:7
|
作者
Mathews, BW [1 ]
Carpenter, JR
Sollenberger, LE
Hisashima, KD
机构
[1] Univ Hawaii, Coll Agr Forestry & Nat Resource Management, Hilo, HI 96720 USA
[2] Univ Hawaii Manoa, Dept Anim Sci, Honolulu, HI 96822 USA
[3] Univ Florida, Dept Agron, Gainesville, FL 32611 USA
[4] USDA, NRCS, Hilo, HI 96721 USA
关键词
D O I
10.1081/CSS-100103003
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Pasture fertilization affects plant growth and animal production, and it may influence the redistribution and cycling of nutrients excreted in dung and urine. Kikuyugrass (Pennisetum clandestinum Hochst. ex Chiov.) pastures on a high organic carbon (C) Typic Hydrudand soil with and without (control) annual nitrogen (N) and periodic phosphorus (P) and potassium (K) fertilizations were stocked with Hereford and crossbred cattle (Bos taurus) for 33 years. The pastures were divided into 1.2-ha paddocks for rotational stocking after the 15th year. Selected fertilized paddocks that were uniformly managed over the years were paired with control paddocks to determine management effects on soil organic C: soil and plant N, P, and K; and earthworm distribution. Responses were assessed using a zonal sampling procedure based on distance from the waterer because the paddocks lacked shade. Soil organic C, organic N, and organic P did not statistically differ between managements or zones in any horizon. Relative to the control, however, an apparent recovery of 25% of the total N applied to the fertilized paddocks was obtained as soil organic N within the 80 cm profile depth examined. Inorganic N (NH(4)-N + NO(3)-N) was greater in the Ap1 and Bw1 horizons of fertilized paddocks, and there was a trend in the Apl horizon toward greater concentrations within 15 m of the waterer. Additionally, substantial inorganic P accumulated within 30 m of the waterers in the Ap1 anti Bw1 horizons of fertilized paddocks while minimal P accumulation occurred within 15 m of the waterer in control paddocks. The magnitude of K accumulation near waterers was also considerably greater in the Ap1 horizon of fertilized paddocks. It is suggested that fertilization increases the magnitude of P and K accumulation near waterers due to the combination of increased forage P and K concentrations and pasture carrying capacity. Management and zone effects for forage N, P, and K tended to follow patterns relatively similar to the soil Ap1 horizon data for the inorganic fi,rms of these nutrients. Earthworm populations did not differ among zones, but populations in fertilized paddocks were double those of control paddocks.
引用
收藏
页码:209 / 230
页数:22
相关论文
共 50 条
  • [1] Organic carbon fractions affected by long-term fertilization in a subtropical paddy soil
    Huang, Shan
    Rui, Wenyi
    Peng, Xianxian
    Huang, Qianru
    Zhang, Weijian
    NUTRIENT CYCLING IN AGROECOSYSTEMS, 2010, 86 (01) : 153 - 160
  • [2] Effect of Long-Term Fertilization on Organic Carbon and Nitrogen in a Subtropical Paddy Soil
    HUANG Qian-Ru 1
    Pedosphere, 2009, (06) : 727 - 734
  • [3] Effect of Long-Term Fertilization on Organic Carbon and Nitrogen in a Subtropical Paddy Soil
    Huang Qian-Ru
    Hu Feng
    Huang Shan
    Li Hui-Xin
    Yuan Ying-Hong
    Pan Gen-Xing
    Zhang Wei-Jian
    PEDOSPHERE, 2009, 19 (06) : 727 - 734
  • [4] Organic carbon fractions affected by long-term fertilization in a subtropical paddy soil
    Shan Huang
    Wenyi Rui
    Xianxian Peng
    Qianru Huang
    Weijian Zhang
    Nutrient Cycling in Agroecosystems, 2010, 86 : 153 - 160
  • [5] Effect of Long-Term Fertilization on Organic Carbon and Nitrogen in a Subtropical Paddy Soil
    HUANG QianRu HU Feng HUANG Shan LI HuiXin YUAN YingHong PAN GenXing and ZHANG WeiJian College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing China Jiangxi Institute of Red Soils Jinxian China Institute of Applied Ecology Nanjing Agricultural University Nanjing China
    Pedosphere, 2009, 19 (06) : 727 - 734
  • [6] Earthworm community and soil microstructure changes with long-term organic fertilization
    Sunilda Valdez, Alcira
    Dolores Bosch-Serra, Angela
    Rosa Yague, Maria
    Maria Poch, Rosa
    Puigpinos, Elena
    ARCHIVES OF AGRONOMY AND SOIL SCIENCE, 2020, 66 (07) : 957 - 970
  • [7] Soil aggregation and organic carbon fractions affected by long-term fertilization in a red soil of subtropical China
    Huang, Shan
    Peng, Xianxian
    Huang, Qianru
    Zhang, Weijian
    GEODERMA, 2010, 154 (3-4) : 364 - 369
  • [8] Effect of long-term compost fertilization on the distribution of organic carbon and nitrogen in soil aggregates
    Gioacchini, P.
    Baldi, E.
    Montecchio, D.
    Mazzon, M.
    Quartieri, M.
    Toselli, M.
    Marzadori, C.
    CATENA, 2024, 240
  • [9] Impacts of long-term chemical and organic fertilization on soil puddlability in subtropical China
    Bi, Lidong
    Yao, Shuihong
    Zhang, Bin
    SOIL & TILLAGE RESEARCH, 2015, 152 : 94 - 103
  • [10] Long-term fertilization effects on soil organic carbon sequestration in an Inceptisol
    Ghosh, Avijit
    Bhattacharyya, Ranjan
    Meena, M. C.
    Dwivedi, B. S.
    Singh, Geeta
    Agnihotri, R.
    Sharma, C.
    SOIL & TILLAGE RESEARCH, 2018, 177 : 134 - 144