In vitro degradation rate of apatitic calcium phosphate cement with incorporated PLGA microspheres

被引:136
|
作者
Lanao, R. P. Felix [1 ]
Leeuwenburgh, S. C. G. [1 ]
Wolke, J. G. C. [1 ]
Jansen, J. A. [1 ]
机构
[1] Radboud Univ Nijmegen, Med Ctr, Dept Biomat, NL-6500 HB Nijmegen, Netherlands
关键词
Calcium phosphate cement; PLGA; Microspheres; Degradation; In vitro; ACID) MICROSPHERES; DRUG-DELIVERY; SCAFFOLDS; VIVO; COMPOSITE; BIOCOMPATIBILITY; BIODEGRADATION; FABRICATION; MACROPORES;
D O I
10.1016/j.actbio.2011.05.036
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Calcium phosphate cements (CPCs) are frequently used as bone substitute material. Despite their superior clinical handling and excellent biocompatibility, they exhibit poor degradability, which limits bone ingrowth into the implant. Microspheres were prepared from poly(D,L-lactic-co-glycolic acid) (PLGA) and included in injectable CPCs as porogens in order to enhance its macroporosity after the polymeric microspheres had degraded. Upon degradation of the PLGA microspheres, acid is produced that enhances the dissolution rate of the CPC. However, the effect of the characteristics of PLGA microspheres on the degradation rate of CPCs has never been studied before. Therefore, the purpose of the current study was to investigate the dependence of CPC degradation on the chemical and morphological characteristics of incorporated PLGA microspheres. With respect to the chemical characteristics of the PLGA microspheres, the effects of both PLGA molecular weight (5, 17 and 44 kDa) and end-group functionalization (acid-terminated or end-capped) were studied. In addition, two types of PLGA microspheres, differing in morphology (hollow vs. dense), were tested. The results revealed that, although both chemical parameters clearly affected the polymer degradation rate when embedded as hollow microspheres in CPC, the PLGA and CPC degradation rates were mainly dependent on the end-group functionalization. Moreover, it was concluded that dense microspheres were more efficient porogens than hollow ones by increasing the CPC macroporosity during in vitro incubation. By combining all test parameters, it was concluded that dense PLGA microspheres consisting of acid-terminated PLGA of 17 kDa exhibited the highest and fastest acid-producing capacity and correspondingly the highest and fastest amount of porosity. In conclusion, the data presented here indicate that the combination of dense, acid-terminated PLGA microspheres with CPC emerges as a successful combination to achieve enhanced apatitic CPC degradation. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:3459 / 3468
页数:10
相关论文
共 50 条
  • [1] In vivo degradation of calcium phosphate cement incorporated into biodegradable microspheres
    Habraken, W. J. E. M.
    Liao, H. B.
    Zhang, Z.
    Wolke, J. G. C.
    Grijpma, D. W.
    Mikos, A. G.
    Feijen, J.
    Jansen, J. A.
    [J]. ACTA BIOMATERIALIA, 2010, 6 (06) : 2200 - 2211
  • [2] Effect of PLGA/lecithin hybrid microspheres and β-tricalcium phosphate granules on the physicochemical properties, in vitro degradation and biocompatibility of calcium phosphate cement
    Wu, Tingting
    Shi, Haishan
    Ye, Jiandong
    [J]. RSC ADVANCES, 2015, 5 (59) : 47749 - 47756
  • [3] Effects of Stirring and Fluid Perfusion on the In Vitro Degradation of Calcium Phosphate Cement/PLGA Composites
    An, Jie
    Leeuwenburgh, Sander C. G.
    Wolke, Joop G. C.
    Jansen, John A.
    [J]. TISSUE ENGINEERING PART C-METHODS, 2015, 21 (11) : 1171 - 1177
  • [4] Mechanical evaluation of implanted calcium phosphate cement incorporated with PLGA microparticles
    Link, Dennis P.
    van den Dolder, Juliette
    Jurgens, Wouter J. F. M.
    Wolke, Joop G. C.
    Jansen, John A.
    [J]. BIOMATERIALS, 2006, 27 (28) : 4941 - 4947
  • [5] On the development of an apatitic calcium phosphate bone cement
    Komath, M
    Varma, HK
    Sivakumar, R
    [J]. BULLETIN OF MATERIALS SCIENCE, 2000, 23 (02) : 135 - 140
  • [6] Preparation and properties of an apatitic calcium phosphate cement
    Nemati, R
    Solati-Hashjin, M
    Salahi, E
    Moaarzadeh, F
    Marghusian, V
    [J]. CFI-CERAMIC FORUM INTERNATIONAL, 2005, 82 (08): : E47 - E51
  • [7] On the development of an apatitic calcium phosphate bone cement
    Manoj Komath
    H. K. Varma
    R. Sivakumar
    [J]. Bulletin of Materials Science, 2000, 23 : 135 - 140
  • [8] PLGA microsphere/calcium phosphate cement composites for tissue engineering: in vitro release and degradation characteristics
    Habraken, W. J. E. M.
    Wolke, J. G. C.
    Mikos, A. G.
    Jansen, J. A.
    [J]. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2008, 19 (09) : 1171 - 1188
  • [9] Evaluation of the biocompatible and osteoinductive properties of calcium phosphate cement incorporated with PLGA microparticles
    Link, D. P.
    Van den Dolder, J.
    Van den Beucken, J. J. J. P.
    Cuijpers, V. M.
    Wolke, J. G. C.
    Jansen, J. A.
    [J]. TISSUE ENGINEERING, 2007, 13 (07): : 1691 - 1691
  • [10] Setting reaction and hardening of an apatitic calcium phosphate cement
    Ginebra, MP
    Fernandez, E
    DeMaeyer, EAP
    Verbeeck, RMH
    Boltong, MG
    Ginebra, J
    Driessens, FCM
    Planell, JA
    [J]. JOURNAL OF DENTAL RESEARCH, 1997, 76 (04) : 905 - 912