Weighted moments for a supercritical branching process in a varying or random environment

被引:6
|
作者
Li YingQiu [1 ,2 ]
Hu YangLi [1 ,2 ]
Liu QuanSheng [1 ,3 ]
机构
[1] Changsha Univ Sci & Technol, Coll Math & Comp Sci, Changsha 410004, Hunan, Peoples R China
[2] Hunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Hunan, Peoples R China
[3] Univ Bretgne Sud, LMAM, F-56017 Vannes, France
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
branching process; varying environment; random environment; moment; martingale;
D O I
10.1007/s11425-011-4220-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let W be the limit of the normalized population size of a supercritical branching process in a varying or random environment. By an elementary method, we find sufficient conditions under which W has finite weighted moments of the form EW (p) l(W), where p > 1, l >= 0 is a concave or slowly varying function.
引用
收藏
页码:1437 / 1444
页数:8
相关论文
共 50 条
  • [1] Weighted moments for a supercritical branching process in a varying or random environment
    LI YingQiu1
    2College of Mathematics and Computer Sciences
    3LMAM
    Science China(Mathematics), 2011, 54 (07) : 1437 - 1444
  • [2] Weighted moments for a supercritical branching process in a varying or random environment
    YingQiu Li
    YangLi Hu
    QuanSheng Liu
    Science China Mathematics, 2011, 54 : 1437 - 1444
  • [3] QUENCHED WEIGHTED MOMENTS OF A SUPERCRITICAL BRANCHING PROCESS IN A RANDOM ENVIRONMENT
    Wang, Yuejiao
    Li, Yingqiu
    Liu, Quansheng
    Liu, Zaiming
    ASIAN JOURNAL OF MATHEMATICS, 2019, 23 (06) : 969 - 984
  • [4] Weighted moments of the limit of a branching process in a random environment
    Liang, Xingang
    Liu, Quansheng
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2013, 282 (01) : 127 - 145
  • [5] Weighted moments of the limit of a branching process in a random environment
    Xingang Liang
    Quansheng Liu
    Proceedings of the Steklov Institute of Mathematics, 2013, 282 : 127 - 145
  • [6] Quenched weighted moments for a branching process with immigration in a random environment
    Huang, Xulan
    STOCHASTIC MODELS, 2024, 40 (02) : 278 - 295
  • [7] Harmonic moments and large deviations for a supercritical branching process in a random environment
    Grama, Ion
    Liu, Quansheng
    Miqueu, Eric
    ELECTRONIC JOURNAL OF PROBABILITY, 2017, 22
  • [8] Asymptotics of the distribution and harmonic moments for a supercritical branching process in a random environment
    Grama, Ion
    Liu, Quansheng
    Miqueu, Eric
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (04): : 1934 - 1950
  • [9] Harmonic moments and large deviations for a supercritical branching process in a random environment
    Huang, Chunmao
    Liu, Quansheng
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (21-22) : 1199 - 1202
  • [10] The Extinction of a Branching Process in a Varying or Random Environment
    Hu, Yangli
    Hu, Wei
    Yin, Yue
    NONLINEAR MATHEMATICS FOR UNCERTAINTY AND ITS APPLICATIONS, 2011, 100 : 309 - 315