Multiple periodic solutions for impulsive Gause-type ratio-dependent predator-prey systems with non-monotonic numerical responses

被引:6
|
作者
Dai, Binxiang [1 ]
Li, Ying [1 ]
Luo, Zhenguo [1 ]
机构
[1] Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410075, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Ratio-dependent; Impulsive predator-prey system; Non-monotonic functional response; Multiple periodic solutions; Continuation theorem; GLOBAL QUALITATIVE-ANALYSIS; FUNCTIONAL-RESPONSE; MODEL; BIFURCATIONS; DELAY;
D O I
10.1016/j.amc.2011.02.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the existence of multiple periodic solutions for impulsive Gause-type ratio-dependent predator-prey systems with non-monotonic numerical responses and time delays. Some sufficient conditions are derived by using the continuation theorem of coincidence degree theory and analysis technique. As corollaries, some applications are listed. In particular, the presented criteria improve and extend many previous results in the literature. (C) 2011 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:7478 / 7487
页数:10
相关论文
共 50 条
  • [1] Multiple periodic solutions in delayed Gause-type ratio-dependent predator-prey systems with non-monotonic numerical responses
    Ding, Xiaoquan
    Jiang, Jifa
    MATHEMATICAL AND COMPUTER MODELLING, 2008, 47 (11-12) : 1323 - 1331
  • [2] Multiple periodic solutions in generalized Gause-type predator-prey systems with non-monotonic numerical responses
    Ding, Xiaoquan
    Jiang, Jifa
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (05) : 2819 - 2827
  • [3] Periodic Solutions for Gause-Type Ratio-Dependent Predator-Prey Systems with Delays on Time Scales
    Ding, Xiaoquan
    Liu, Hongyuan
    Wang, Fengye
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2013, 2013
  • [4] Positive periodic solutions for impulsive Gause-type predator-prey systems
    Ding, Xiaoquan
    Su, Bentang
    Hao, Jianmin
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (12) : 6785 - 6797
  • [5] GLOBAL ANALYSIS IN DELAYED RATIO-DEPENDENT GAUSE-TYPE PREDATOR-PREY MODELS
    Guo, Shuang
    Jiang, Weihua
    Wang, Hongbin
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2017, 7 (03): : 1095 - 1111
  • [6] Positive periodic solutions in delayed Gause-type predator-prey systems
    Ding, Xiaoquan
    Jiang, Jifa
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 339 (02) : 1220 - 1230
  • [7] POSITIVE PERIODIC SOLUTION FOR A GAUSE-TYPE RATIO-DEPENDENT PREDATOR-PREY SYSTEM WITH DIFFUSION AND TIME DELAY
    Ding, Xiaoquan
    Wang, Yuanyuan
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2008, 1 (03) : 339 - 354
  • [8] A qualitative study on general Gause-type predator-prey models with non-monotonic functional response
    Ko, Wonlyul
    Ryu, Kimun
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (04) : 2558 - 2573
  • [9] Multiple positive periodic solutions of a Gause-type predator-prey model with Allee effect and functional responses
    Yu, Shanshan
    Liu, Jiang
    Lin, Xiaojie
    AIMS MATHEMATICS, 2020, 5 (06): : 6135 - 6148
  • [10] Multiple periodic solutions of a ratio-dependent predator-prey model
    Xia, Yonghui
    Han, Maoan
    CHAOS SOLITONS & FRACTALS, 2009, 39 (03) : 1100 - 1108