EKELAND'S VARIATIONAL PRINCIPLE IN SJS']JS-METRIC SPACES

被引:0
|
作者
Beg, Ismat [1 ]
Roy, Kushal [2 ]
Saha, Mantu [2 ]
机构
[1] Lahore Sch Econ, Ctr Math & Stat Sci, Lahore 53200, Pakistan
[2] Univ Burdwan, Dept Math, Purba Bardhaman 713104, W Bengal, India
关键词
Ekeland's variational principle; S-[!text type='JS']JS[!/text] - metric space; fixed point; THEOREM;
D O I
10.22190/FUMI210525081B
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove Ekeland's variational principle in S-JS - metric spaces. A generalization of Caristi fixed point theorem on S-JS - metric spaces is obtained as a consequence.
引用
收藏
页码:1117 / 1127
页数:11
相关论文
共 50 条
  • [1] SJS']JS-Metric and Topological Spaces
    Beg, I
    Roy, K.
    Saha, M.
    [J]. JOURNAL OF MATHEMATICAL EXTENSION, 2021, 15 (04)
  • [2] ON EKELAND'S VARIATIONAL PRINCIPLE IN b-METRIC SPACES
    Bota, Monica
    Molnar, Andrea
    Varga, Csaba
    [J]. FIXED POINT THEORY, 2011, 12 (01): : 21 - 28
  • [3] ON EKELAND'S VARIATIONAL PRINCIPLE IN M-METRIC SPACES
    Asadi, Mehdi
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2016, 17 (06) : 1151 - 1158
  • [4] On the weak form of Ekeland's Variational Principle in quasi-metric spaces
    Karapinar, Erdal
    Romaguera, Salvador
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2015, 184 : 54 - 60
  • [5] An induction theorem and Ekeland's variational principle in partial metric spaces with applications
    Hai, Le Phuoc
    Khanh, Phan Quoc
    [J]. OPTIMIZATION, 2020, 69 (7-8) : 1481 - 1511
  • [6] Ekeland's Variational Principle and Minimization Takahashi's Theorem in Generalized Metric Spaces
    Hashemi, Eshagh
    Saadati, Reza
    [J]. MATHEMATICS, 2018, 6 (06):
  • [7] Completeness in quasi-metric spaces and Ekeland Variational Principle
    Cobzas, S.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (08) : 1073 - 1084
  • [8] EA and CLRT Property in JS']JS-Metric Spaces
    Rani, Asha
    Jyoti, Kumari
    Dahiya, Krishan
    [J]. ADVANCES IN BASIC SCIENCES (ICABS 2019), 2019, 2142
  • [9] Ekeland's variational principle in locally complete spaces
    Qiu, JH
    [J]. MATHEMATISCHE NACHRICHTEN, 2003, 257 : 55 - 58
  • [10] Ekeland's variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces
    Lin, Lai-Jiu
    Du, Wei-Shih
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (01) : 360 - 370