A recently proposed ensemble approach to game-tree search has attracted a great deal of attention. The ensemble system consists of M computer players, where each player uses a different series of pseudo-random numbers. A combination of multiple players under the majority voting system would improve the performance of a Shogi-playing computer. We present a new strategy of move selection based on the search values of a number of players. The move decision is made by selecting one player from all M players. Each move is selected by referring to the evaluation value of the tree search of each player. The performance and mechanism of the strategy are examined. We show that the optimistic selection rule, which selects the player that yields the highest evaluation value, outperforms the majority voting system. By grouping 16 or more computer players straightforwardly, the winning rates of the strongest Shogi programs increase from 50 to 60% or even higher.