BLIND UNMIXING USING A DOUBLE DEEP IMAGE PRIOR

被引:0
|
作者
Zhou, Chao [1 ]
Rodrigues, Miguel R. D. [1 ]
机构
[1] UCL, Dept Elect & Elect Engn, London, England
关键词
Hyperspectral unmixing; blind unmixing; neural networks; deep image prior (DIP);
D O I
10.1109/ICASSP43922.2022.9747545
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, we propose a novel network structure to solve the blind hyperspectral unmixing problem using a double Deep Image Prior (DIP). In particular, the blind unmixing problem involves two sub-problems: endmember estimation and abundance estimation. We, therefore, propose two sub-networks, endmember estimation DIP (EDIP) and abundance estimation DIP (ADIP), to generate the estimation of endmembers and estimation of corresponding abundances respectively. The overall network is then constructed by assembling these two sub-networks. The network is trained in an end-to-end manner by minimizing a novel composite loss function. The experiments on synthetic and real datasets show the effectiveness of the proposed method over state-of-art unmixing methods.
引用
收藏
页码:1665 / 1669
页数:5
相关论文
共 50 条
  • [1] Hyperspectral Blind Unmixing Using a Double Deep Image Prior
    Zhou, Chao
    Rodrigues, Miguel R. D.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16478 - 16492
  • [2] UnDIP: Hyperspectral Unmixing Using Deep Image Prior
    Rasti, Behnood
    Koirala, Bikram
    Scheunders, Paul
    Ghamisi, Pedram
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [3] UnDIP: Hyperspectral Unmixing Using Deep Image Prior
    Rasti, Behnood
    Koirala, Bikram
    Scheunders, Paul
    Ghamisi, Pedram
    IEEE Transactions on Geoscience and Remote Sensing, 2022, 60
  • [4] COLLABORATIVE CONSISTENCY AUTOENCODER HYPERSPECTRAL UNMIXING USING DEEP IMAGE PRIOR
    Huang, Min
    Tang, Mengxiong
    Li, Fan
    Zhang, Shaoquan
    Wang, Shengqian
    Zhang, Ningyuan
    Deng, Chengzhi
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7523 - 7526
  • [5] Blind Image Deconvolution Using Variational Deep Image Prior
    Huo D.
    Masoumzadeh A.
    Kushol R.
    Yang Y.-H.
    IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (10) : 11472 - 11483
  • [6] BLIND HYPERSPECTRAL UNMIXING USING DUAL BRANCH DEEP AUTOENCODER WITH ORTHOGONAL SPARSE PRIOR
    Dou, Zeyang
    Gao, Kun
    Zhang, Xiaodian
    Wang, Hong
    Wang, Junwei
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 2428 - 2432
  • [7] Blind Image Deblurring based on Deep Image Prior
    Lee C.
    Choi J.
    IEIE Transactions on Smart Processing and Computing, 2022, 11 (02): : 126 - 132
  • [8] Self-supervised image blind deblurring using deep generator prior
    Li Yuan
    Wang Shasha
    Chen Lei
    OPTOELECTRONICS LETTERS, 2022, 18 (03) : 187 - 192
  • [9] Self-supervised image blind deblurring using deep generator prior
    LI Yuan
    WANG Shasha
    CHEN Lei
    OptoelectronicsLetters, 2022, 18 (03) : 187 - 192
  • [10] Self-supervised image blind deblurring using deep generator prior
    Yuan Li
    Shasha Wang
    Lei Chen
    Optoelectronics Letters, 2022, 18 : 187 - 192