AMI study of Hamiltonian and non-Hamiltonian cyclophanes

被引:0
|
作者
Türker, L [1 ]
机构
[1] Middle E Tech Univ, Dept Chem, TR-06531 Ankara, Turkey
关键词
D O I
暂无
中图分类号
O62 [有机化学];
学科分类号
070303 ; 081704 ;
摘要
AM1 type semiempirical molecular orbital calculations have been performed on [2(n)] and [3(2)] types of cyclophanes. It has been found that within the isomeric set of these [2(n)]-type endothermic structures the most and the least endothermic ones are non-Hamiltonian and Hamiltonian cyclophanes, respectively. Whereas, the smallest or the largest interfrontier energy gap happens depending on non-Hamiltonian or Hamiltonian nature of the compound.
引用
下载
收藏
页码:152 / 155
页数:4
相关论文
共 50 条
  • [1] Quantization of Hamiltonian and non-Hamiltonian systems
    Rashkovskiy, Sergey A.
    COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2023, 15 (02): : 267 - 288
  • [2] Non-Hamiltonian molecular dynamics: Generalizing Hamiltonian phase space principles to non-Hamiltonian systems
    Tuckerman, ME
    Liu, Y
    Ciccotti, G
    Martyna, GJ
    JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (04): : 1678 - 1702
  • [3] Non-Hamiltonian monodromy
    Cushman, R
    Duistermaat, JJ
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 172 (01) : 42 - 58
  • [4] First integrals of hamiltonian and non-hamiltonian systems and chaos
    Bouquet, S.
    Dewisme, A.
    Proceedings Needs on Nonlinear Evolution Equations and Dynamical Systems, 1992,
  • [5] HAMILTONIAN AND NON-HAMILTONIAN MODELS FOR WATER-WAVES
    OLVER, PJ
    LECTURE NOTES IN PHYSICS, 1984, 195 : 273 - 290
  • [6] NON-HAMILTONIAN BICUBIC GRAPHS
    GEORGES, JP
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 46 (01) : 121 - 124
  • [7] ALGORITHMS FOR NON-HAMILTONIAN DYNAMICS
    Sergi, Alessandro
    Ezra, Gregory S.
    ATTI ACCADEMIA PELORITANA DEI PERICOLANTI-CLASSE DI SCIENZE FISICHE MATEMATICHE E NATURALI, 2010, 88 (02):
  • [8] On the Number of Non-Hamiltonian Graphs
    P. V. Roldugin
    Mathematical Notes, 2004, 75 : 652 - 659
  • [9] Nontwist non-Hamiltonian systems
    Altmann, E. G.
    Cristadoro, G.
    Pazo, D.
    PHYSICAL REVIEW E, 2006, 73 (05):
  • [10] On the number of non-Hamiltonian graphs
    Roldugin, PV
    MATHEMATICAL NOTES, 2004, 75 (5-6) : 652 - 659