CONVERGENCE RATES OF SUPERCELL CALCULATIONS IN THE REDUCED HARTREE-FOCK MODEL

被引:6
|
作者
Gontier, David [1 ,2 ]
Lahbabi, Salma [3 ]
机构
[1] Univ Paris Est, Ecole Ponts, F-77455 Marne La Vallee, France
[2] INRIA, F-77455 Marne La Vallee, France
[3] Univ Hassan II Casablanca, ENSEM, Km 7 Route El Jadida,BP 8118, Casablanca, Morocco
关键词
Reduced Hartree-Fock; supercell model; Riemann sums; analytic functions; ENERGY; BLOCH;
D O I
10.1051/m2an/2015084
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is concerned with the numerical simulations of perfect crystals. We study the rate of convergence of the reduced Hartree-Fock (rHF) model in a supercell towards the periodic rHF model in the whole space. We prove that, whenever the crystal is an insulator or a semi-conductor, the supercell energy per unit cell converges exponentially fast towards the periodic rHF energy per unit cell, with respect to the size of the supercell.
引用
收藏
页码:1403 / 1424
页数:22
相关论文
共 50 条