Directional High-Value Regeneration of Lithium, Iron, and Phosphorus from Spent Lithium Iron Phosphate Batteries

被引:15
|
作者
Zhang, Jia-feng [1 ]
Hu, Wenyang [1 ]
Zou, Jingtian [1 ]
Wang, Xiaowei [1 ]
Li, Pengfei [1 ]
Peng, Dezhao [1 ]
Li, Yong
Zhao, Ruirui [2 ]
He, Di [3 ]
机构
[1] Cent South Univ, Sch Met & Environm, Natl Engn Lab High Efficiency Recovery Refractory, Changsha 410083, Peoples R China
[2] South China Normal Univ, Engn Res Ctr MTEES, Sch Chem, Minist Educ, Guangzhou 510006, Guangdong, Peoples R China
[3] Guangdong Univ Technol, Sch Ecol Environm & Resources, Key Lab City Cluster Environm Safety & Green Dev, Minist Educ, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
spent lithium-ion batteries; lithium iron phosphate; pyroprocessing; regeneration; ION BATTERIES; SELECTIVE RECOVERY; LIFEPO4; LI; PERFORMANCE; FE;
D O I
10.1021/acssuschemeng.2c03997
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As lithium-ion batteries (LIBs) are undergoing unprecedented development in electric vehicles (EVs) and renewable grids, recycling spent battery disposal is becoming the dominating issue considering the urgent demand for sustainable resources and eco-friendly development. However, existing recovery methods for spent LIBs still suffer from complex processes and low processing efficiency. Herein, an effective pyroprocessing-based strategy was proposed to recycle spent lithium iron phosphate (LFP) materials, featuring full element regeneration and conversion of high-value products. Specifically, over 99% Li was extracted and converted into high purity lithium carbonate (>99%), while Fe and P were further converted into value-added Fe2P2O7 and Na4P2O7, respectively. Due to the benefits of high efficiency of metal extraction and the reuse of all valuable elements, the pyroprocessing-based strategy potentially generates the profit of 1.44 $ kg(-1) of LFP batteries, over three times more than that of the conventional hydrometallurgical process, while the discharges of wastewater and residue are reduced by 66.3 and 93.9%, respectively. This study provides a new pyroprocessing-based approach to the green recovery of all elements of LFP materials in spent LFP batteries.
引用
收藏
页码:13424 / 13434
页数:11
相关论文
共 50 条
  • [1] A Review on the Recovery of Lithium and Iron from Spent Lithium Iron Phosphate Batteries
    Jing, Chen
    Tran, Thanh Tuan
    Lee, Man Seung
    MINERAL PROCESSING AND EXTRACTIVE METALLURGY REVIEW, 2024,
  • [2] Regeneration cathode material mixture from spent lithium iron phosphate batteries
    Wang, Lihua
    Li, Jian
    Zhou, Hongming
    Huang, Zuqiong
    Tao, Shengdong
    Zhai, Bingkun
    Liu, Liangqin
    Hu, Leshan
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (11) : 9283 - 9290
  • [3] Regeneration cathode material mixture from spent lithium iron phosphate batteries
    Lihua Wang
    Jian Li
    Hongming Zhou
    Zuqiong Huang
    Shengdong Tao
    Bingkun Zhai
    Liangqin Liu
    Leshan Hu
    Journal of Materials Science: Materials in Electronics, 2018, 29 : 9283 - 9290
  • [4] Selective recovery of lithium from spent lithium iron phosphate batteries
    Wu, Yuanzhong
    Li, Guangming
    Zhao, Siqi
    Yin, Yanwei
    Wang, Beng
    He, Wenzhi
    WASTE MANAGEMENT & RESEARCH, 2024,
  • [5] High value recovery of waste lithium iron phosphate batteries to prepare lithium iron phosphate materials
    Dong M.
    Hu Q.-Y.
    Li X.-H.
    Wang Z.-X.
    Guo H.-J.
    Yan G.-C.
    Peng W.-J.
    Li G.-C.
    Wang J.-X.
    Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 2023, 33 (05): : 1601 - 1610
  • [6] Recycling of cathode from spent lithium iron phosphate batteries
    Yadav, Prasad
    Jie, Chan Jun
    Tan, Shermaine
    Srinivasan, Madhavi
    JOURNAL OF HAZARDOUS MATERIALS, 2020, 399
  • [7] Research Progress on Recovery and Regeneration of Lithium Iron Phosphate in Spent Power Batteries
    Bai X.
    Hu Y.
    Zhuang W.
    Xiyou Jinshu/Chinese Journal of Rare Metals, 2022, 46 (02): : 254 - 264
  • [8] Electrochemical selective lithium extraction and regeneration of spent lithium iron phosphate
    Qin, Zijun
    Li, Xiaohui
    Shen, Xinjie
    Cheng, Yi
    Wu, Feixiang
    Li, Yunjiao
    He, Zhenjiang
    WASTE MANAGEMENT, 2024, 174 : 106 - 113
  • [9] A review on the recycling of spent lithium iron phosphate batteries
    Zhao, Tianyu
    Li, Weilun
    Traversy, Michael
    Choi, Yeonuk
    Ghahreman, Ahmad
    Zhao, Zhongwei
    Zhang, Chao
    Zhao, Weiduo
    Song, Yunfeng
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 351
  • [10] Treatment of spent lithium iron phosphate (LFP) batteries
    Naseri, Tannaz
    Mousavi, Seyyed Mohammad
    CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2024, 47