Observation of many-body localization of interacting fermions in a quasirandom optical lattice

被引:1255
|
作者
Schreiber, Michael [1 ,2 ]
Hodgman, Sean S. [1 ,2 ]
Bordia, Pranjal [1 ,2 ]
Lueschen, Henrik P. [1 ,2 ]
Fischer, Mark H. [3 ]
Vosk, Ronen [3 ]
Altman, Ehud [3 ]
Schneider, Ulrich [1 ,2 ,4 ]
Bloch, Immanuel [1 ,2 ]
机构
[1] Univ Munich, Fak Phys, D-80799 Munich, Germany
[2] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[3] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-7610001 Rehovot, Israel
[4] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
关键词
ANDERSON LOCALIZATION; ULTRACOLD ATOMS; SYSTEM; GAS; THERMALIZATION; EQUILIBRIUM; RELAXATION; TRANSPORT; INSULATOR; MATTER;
D O I
10.1126/science.aaa7432
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many-body localization (MBL), the disorder-induced localization of interacting particles, signals a breakdown of conventional thermodynamics because MBL systems do not thermalize and show nonergodic time evolution. We experimentally observed this nonergodic evolution for interacting fermions in a one-dimensional quasirandom optical lattice and identified the MBL transition through the relaxation dynamics of an initially prepared charge density wave. For sufficiently weak disorder, the time evolution appears ergodic and thermalizing, erasing all initial ordering, whereas above a critical disorder strength, a substantial portion of the initial ordering persists. The critical disorder value shows a distinctive dependence on the interaction strength, which is in agreement with numerical simulations. Our experiment paves the way to further detailed studies of MBL, such as in noncorrelated disorder or higher dimensions.
引用
收藏
页码:842 / 845
页数:4
相关论文
共 50 条
  • [1] Many-body localization transition in a lattice model of interacting fermions: Statistics of renormalized hoppings in configuration space
    Monthus, Cecile
    Garel, Thomas
    PHYSICAL REVIEW B, 2010, 81 (13)
  • [2] Many-body spectral statistics of interacting fermions
    Pascaud, M.
    Montambaux, G.
    Annalen der Physik (Leipzig), 1998, 7 (5-6): : 406 - 416
  • [3] Many-body spectral statistics of interacting fermions
    Pascaud, M
    Montambaux, G
    ANNALEN DER PHYSIK, 1998, 7 (5-6) : 406 - 416
  • [4] Many-body diffusion algorithm for interacting harmonic fermions
    Luczak, F
    Brosens, F
    Devreese, JT
    Lemmens, LF
    COMPUTER PHYSICS COMMUNICATIONS, 1999, 121 : 449 - 451
  • [5] Challenges to observation of many-body localization
    Sierant, Piotr
    Zakrzewski, Jakub
    PHYSICAL REVIEW B, 2022, 105 (22)
  • [6] Many-Body Localization for Randomly Interacting Bosons
    Sierant, P.
    Delande, D.
    Zakrzewski, J.
    ACTA PHYSICA POLONICA A, 2017, 132 (06) : 1707 - 1712
  • [7] Lattice methods for strongly interacting many-body systems
    Drut, Joaquin E.
    Nicholson, Amy N.
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2013, 40 (04)
  • [8] Many-body localization in a one-dimensional optical lattice with speckle disorder
    Maksymov, Artur
    Sierant, Piotr
    Zakrzewski, Jakub
    PHYSICAL REVIEW B, 2020, 102 (13)
  • [9] Effects of anisotropy in simple lattice geometries on many-body properties of ultracold fermions in optical lattices
    Golubeva, Anna
    Sotnikov, Andrii
    Hofstetter, Walter
    PHYSICAL REVIEW A, 2015, 92 (04):
  • [10] Observation of energy-resolved many-body localization
    Qiujiang Guo
    Chen Cheng
    Zheng-Hang Sun
    Zixuan Song
    Hekang Li
    Zhen Wang
    Wenhui Ren
    Hang Dong
    Dongning Zheng
    Yu-Ran Zhang
    Rubem Mondaini
    Heng Fan
    H. Wang
    Nature Physics, 2021, 17 : 234 - 239