EMG Signal Classification Using Reflection Coefficients and Extreme Value Machine

被引:2
|
作者
Azhiri, Reza Bagherian [1 ]
Esmaeili, Mohammad [2 ]
Jafarzadeh, Mohsen [3 ]
Nourani, Mehrdad [4 ]
机构
[1] Univ Texas Dallas, Predict Analyt & Technol Lab, ME Dept, Richardson, TX 75080 USA
[2] Univ Texas Dallas, Dept Elect & Comp Engn, Richardson, TX USA
[3] Univ Colorado, El Pomar Inst Innovat & Commercializat, Colorado Springs, CO USA
[4] Univ Texas Dallas, Predict Analyt & Technol Lab, ECE Dept, Richardson, TX USA
关键词
Electromyography; EMG; Extreme Value Machine; Feature Extraction; Reflection Coefficients; SURFACE;
D O I
10.1109/BIOCAS49922.2021.9644978
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Electromyography is a promising approach to the gesture recognition of humans if an efficient classifier with a high accuracy is available. In this paper, we propose to utilize Extreme Value Machine (EVM) as a high performance algorithm for the classification of EMG signals. We employ reflection coefficients obtained from an Autoregressive (AR) model to train a set of classifiers. Our experimental results indicate that EVM has better accuracy in comparison to the conventional classifiers approved in the literature based on K-Nearest Neighbors (KNN) and Support Vector Machine (SVM).
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Raw EMG classification using extreme value machine
    Azhiri, Reza Bagherian
    Esmaeili, Mohammad
    Jafarzadeh, Mohsen
    Nourani, Mehrdad
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 86
  • [2] EMG Signal Classification by Extreme Learning Machine
    Ertugrul, Omer Faruk
    Tagluk, M. Emin
    Kaya, Yilmaz
    Tekin, Ramazan
    2013 21ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2013,
  • [3] Human-machine interface in bioprosthesis control using EMG signal classification
    Wolczowski, Andrzej
    Kurzynski, Marek
    EXPERT SYSTEMS, 2010, 27 (01) : 53 - 70
  • [4] Neural Networks with AR Model Coefficients Applied to the EMG Signal Classification
    Kurzynski, Marek
    Wolczowski, Andrzej
    ARTIFICIAL NEURAL NETWORKS AND INTELLIGENT INFORMATION PROCESSING, 2010, : 81 - 86
  • [5] Classification of the EMG Signal using Cascaded Classifier
    Kwon, Jang-Woo
    Kim, Jung-Ho
    Choi, Heung-Ho
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2006, VOL 14, PTS 1-6, 2007, 14 : 1222 - +
  • [6] Extended extreme learning machine for tensorial signal classification
    Sun, Shuai
    Zhou, Bin
    Zhang, Fan
    Communications in Computer and Information Science, 2014, 472 : 420 - 424
  • [7] Extended Extreme Learning Machine for Tensorial Signal Classification
    Sun, Shuai
    Zhou, Bin
    Zhang, Fan
    BIO-INSPIRED COMPUTING - THEORIES AND APPLICATIONS, BIC-TA 2014, 2014, 472 : 420 - 424
  • [8] Extended Extreme Learning Machine for Biometric Signal Classification
    Zhang, Fan
    Qi, Lin
    Chen, Enqing
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2015, 12 (07) : 1247 - 1251
  • [9] Surface EMG signal classification using wavelet transform
    Cai, Liyu
    Wang, Zhizhong
    Zhang, Haihong
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2000, 17 (03): : 281 - 284
  • [10] Analysis of EMG Signal Using Wavelet Coefficients for Upper Limb Function
    Rekhi, Navleen Singh
    Singh, Hari
    Arora, Ajat Shatru
    Rekhi, Angelina K.
    2009 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL 1, 2009, : 357 - +