Isometries and relative entropy preserving maps on density operators

被引:21
|
作者
Molnar, Lajos [1 ]
Nagy, Gergoe [1 ]
机构
[1] Univ Debrecen, Inst Math, H-4010 Debrecen, Hungary
来源
LINEAR & MULTILINEAR ALGEBRA | 2012年 / 60卷 / 01期
基金
匈牙利科学研究基金会;
关键词
density operators; p-norms; relative entropies; isometries; preservers; STATES;
D O I
10.1080/03081087.2011.570267
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we consider certain kinds of metrics and relative entropies on sets of density operators acting on a finite-dimensional complex Hilbert space. The metrics are the ones induced by the von Neumann-Schatten p-norms. We describe the general form of 'a priori' nonsurjective isometries of the space of all density operators with respect to those distances. In the second part of this article we study mappings preserving entropic quantities. We determine the structure of 'a priori' nonsurjective maps on the set of all density operators which leave a certain measure of relative entropy invariant and also characterize the surjective maps on the set of all invertible density operators with similar invariance properties.
引用
收藏
页码:93 / 108
页数:16
相关论文
共 50 条