Load forecasting using artificial neural networksand support vector regression

被引:0
|
作者
De Rocco, Silvio Michel [1 ,3 ,4 ]
Aoki, Alexandre Rasi [2 ,4 ]
Lamar, Marcus Vinicius [3 ]
机构
[1] Univ Fed Parana, Dept Elect Engn, UFPR Polytech Ctr, POB 19011, BR-80060000 Curitiba, Parana, Brazil
[2] LACTEC, Inst Technol Dev, UFPR Polytech Ctr, BR-81531980 Curitiba, Brazil
[3] Parana Energy Co, BR-81200240 Curitiba, Parana, Brazil
[4] Brasilia Fed Univ, Dept Comp Sci, BR-70919970 Curitiba, Parana, Brazil
关键词
load forecasting; artificial neural networks; support vector regression;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes a short term load forecasting system using two different techniques of Artificial Intelligence: Recurrent Artificial Neural Networks and Support Vector Regression. A brief analysis of the load over the distribution systems connection points in Brazilian Parana States is also done.
引用
收藏
页码:36 / +
页数:2
相关论文
共 50 条
  • [1] Electricity Load Forecasting Using Support Vector Regression with Memetic Algorithms
    Hu, Zhongyi
    Bao, Yukun
    Xiong, Tao
    [J]. SCIENTIFIC WORLD JOURNAL, 2013,
  • [2] A Short-Term Load Forecasting Algorithm Using Support Vector Regression & Artificial Neural Network Method (SVR-ANN)
    Abad
    Sarabia
    Yuzon
    Pacis
    [J]. 2020 11TH IEEE CONTROL AND SYSTEM GRADUATE RESEARCH COLLOQUIUM (ICSGRC), 2020, : 138 - 143
  • [3] Electric Load Forecasting using Support Vector Machines for Robust Regression
    De Cosmis, Sonia
    De Leone, Renato
    Kropat, Erik
    Meyer-Nieberg, Silja
    Pickl, Stefan
    [J]. EMERGING M&S APPLICATIONS IN INDUSTRY AND ACADEMIA SYMPOSIUM AND THE MODELING AND HUMANITIES SYMPOSIUM 2013 (EAIA AND MATH 2013) - 2013 SPRING SIMULATION MULTI-CONFERENCE (SPRINGSIM'13), 2013, 45 (05): : 72 - 79
  • [4] Smart grid load forecasting using online support vector regression
    Vrablecova, Petra
    Ezzeddine, Anna Bou
    Rozinajova, Viera
    Sarik, Slavomir
    Sangaiah, Arun Kumar
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2018, 65 : 102 - 117
  • [5] Peak Filectricity Load Forecasting Using Online Support Vector Regression
    Dhillon, Jagjeet
    Rahman, Shah Atiqur
    Ahmad, Sabbir U.
    Hossain, Jahangir
    [J]. 2016 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2016,
  • [6] Short term load forecasting model using support vector machine based on artificial neural network
    Niu, DX
    Wang, Q
    Li, JC
    [J]. Proceedings of 2005 International Conference on Machine Learning and Cybernetics, Vols 1-9, 2005, : 4260 - 4265
  • [7] Day-Ahead Load Forecasting using Support Vector Regression Machines
    Velasco, Lemuel Clark P.
    Polestico, Daisy Lou L.
    Abella, Dominique Michelle M.
    Alegata, Genesis T.
    Luna, Gabrielle C.
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (03) : 22 - 27
  • [8] Energy Load Forecasting Using Empirical Mode Decomposition and Support Vector Regression
    Ghelardoni, Luca
    Ghio, Alessandro
    Anguita, Davide
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2013, 4 (01) : 549 - 556
  • [9] A Comparison of Artificial Neural Networks and Support Vector Machines for Short-term Load Forecasting using Various Load Types
    Mitchell, Glen
    Bahadoorsingh, Sanjay
    Ramsamooj, Neil
    Sharma, Chandrabhan
    [J]. 2017 IEEE MANCHESTER POWERTECH, 2017,
  • [10] A robust support vector regression model for electric load forecasting
    Luo, Jian
    Hong, Tao
    Gao, Zheming
    Fang, Shu-Cherng
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2023, 39 (02) : 1005 - 1020