A Petrov-Galerkin RBF method for diffusion equation on the unit sphere

被引:0
|
作者
Darani, Mohammadreza Ahmadi [1 ]
Mirzaei, Davoud [2 ,3 ]
机构
[1] Shahrekord Univ, Fac Math Sci, Dept Appl Math, Shahrekord, Iran
[2] Univ Isfahan, Fac Math & Stat, Dept Appl Math & Comp Sci, Esfahan 8174673441, Iran
[3] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
diffusion on the sphere; meshless methods; Petrov-Galerkin method; radial basis functions; spherical basis functions; POSITIVE-DEFINITE FUNCTIONS; SCATTERED DATA INTERPOLATION; DATA APPROXIMATION SCHEME; COLLOCATION; PDES; MULTIQUADRICS; SURFACES;
D O I
10.1002/num.22498
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns a numerical solution for the diffusion equation on the unit sphere. The given method is based on the spherical basis function approximation and the Petrov-Galerkin test discretization. The method is meshless because spherical triangulation is not required neither for approximation nor for numerical integration. This feature is achieved through the spherical basis function approximation and the use of local weak forms instead of a global variational formulation. The local Petrov-Galerkin formulation allows to compute the integrals on small independent spherical caps without any dependence on a connected background mesh. Experimental results show the accuracy and the efficiency of the new method.
引用
收藏
页码:1682 / 1698
页数:17
相关论文
共 50 条