DEVELOPMENT OF REAL-TIME PREDICTION MODEL FOR PNEUMONIA BASED ON CLINICAL AND ENVIRONMENTAL DATA USING DEEP LEARNING

被引:0
|
作者
Ji, Wonjun [1 ]
Park, Yu Rang [2 ]
Park, Hyungjun [1 ]
Kim, Hae Reong [1 ]
Shim, Tae Sun [1 ]
Choi, Chang-Min [1 ]
机构
[1] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Pulm & Crit Care Med, Seoul, South Korea
[2] Yonsei Univ, Dept Biomed Syst Informat, Coll Med, Seoul, South Korea
关键词
D O I
暂无
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
AP1622
引用
收藏
页码:134 / 134
页数:1
相关论文
共 50 条
  • [1] Deep Learning Model for Real-Time Prediction of Intradialytic Hypotension
    Lee, Hojun
    Yun, Donghwan
    Yoo, Jayeon
    Yoo, Kiyoon
    Kim, Yong Chul
    Kim, Dong Ki
    Oh, Kook-Hwan
    Joo, Kwon Wook
    Kim, Yon Su
    Kwak, Nojun
    Han, Seung Seok
    [J]. CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2021, 16 (03): : 396 - 406
  • [2] Real-time relative permeability prediction using deep learning
    Arigbe, O. D.
    Oyeneyin, M. B.
    Arana, I.
    Ghazi, M. D.
    [J]. JOURNAL OF PETROLEUM EXPLORATION AND PRODUCTION TECHNOLOGY, 2019, 9 (02) : 1271 - 1284
  • [3] Real-time relative permeability prediction using deep learning
    O. D. Arigbe
    M. B. Oyeneyin
    I. Arana
    M. D. Ghazi
    [J]. Journal of Petroleum Exploration and Production Technology, 2019, 9 : 1271 - 1284
  • [4] MULTI-PARAMETER PREDICTION FOR STEAM TURBINE BASED ON REAL-TIME DATA USING DEEP LEARNING APPROACHES
    Sun, Lei
    Liu, Tianyuan
    Xie, Yonghui
    Xia, Xinlei
    [J]. PROCEEDINGS OF ASME TURBO EXPO 2021: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, VOL 8, 2021,
  • [5] Real-time prediction of TBM penetration rates using a transformer-based ensemble deep learning model
    School of Intelligent Transportation and Engineering, Guangzhou Maritime University, Guangzhou
    510725, China
    不详
    519060, China
    不详
    999077, Hong Kong
    不详
    518057, China
    不详
    200032, China
    不详
    999077, Hong Kong
    不详
    510006, China
    [J]. Autom Constr,
  • [6] A deep learning approach for real-time crash prediction using vehicle-by-vehicle data
    Basso, Franco
    Pezoa, Raill
    Varas, Mauricio
    Villalobos, Matias
    [J]. ACCIDENT ANALYSIS AND PREVENTION, 2021, 162
  • [7] Real-time hand gesture prediction using deep learning by EMG data acquisition section
    Jo Y.U.
    Oh D.C.
    [J]. Journal of Institute of Control, Robotics and Systems, 2021, 27 (05): : 349 - 355
  • [8] Real-time environmental analysis for industrial vehicles based on synthetic sensor data and deep learning
    Boerold, Axel
    Freitag, Michael
    [J]. 52ND CIRP CONFERENCE ON MANUFACTURING SYSTEMS (CMS), 2019, 81 : 252 - 257
  • [9] Real-time dual prediction of intradialytic hypotension and hypertension using an explainable deep learning model
    Donghwan Yun
    Hyun-Lim Yang
    Seong Geun Kim
    Kwangsoo Kim
    Dong Ki Kim
    Kook-Hwan Oh
    Kwon Wook Joo
    Yon Su Kim
    Seung Seok Han
    [J]. Scientific Reports, 13
  • [10] Real-time dual prediction of intradialytic hypotension and hypertension using an explainable deep learning model
    Yun, Donghwan
    Yang, Hyun-Lim
    Kim, Seong Geun
    Kim, Kwangsoo
    Kim, Dong Ki
    Oh, Kook-Hwan
    Joo, Kwon Wook
    Kim, Yon Su
    Han, Seung Seok
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)