On non-local propositional and weak monodic quantified CTL

被引:10
|
作者
Bauer, S
Hodkinson, I
Wolter, F
Zakharyaschev, M
机构
[1] Univ Leipzig, Inst Informat, D-04109 Leipzig, Germany
[2] Univ London Imperial Coll Sci Technol & Med, Dept Comp, London SW7 2BZ, England
[3] Univ Liverpool, Dept Comp Sci, Liverpool L69 7ZF, Merseyside, England
[4] Kings Coll London, Dept Comp Sci, London WC2R 2LS, England
基金
英国工程与自然科学研究理事会;
关键词
branching time temporal logic; CTL*; predicate temporal logic; decidability; non-local semantics;
D O I
10.1093/logcom/14.1.3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we prove decidability of two kinds of branching time temporal logics. First we show that the non-local version of propositional PCTL*, in which truth values of atoms may depend on the branch of evaluation, is decidable. Then we use this result to establish decidability of various fragments of quantified PCTL*, where the next-time operator can be applied only to formulas with at most one free variable, all other temporal operators and path quantifiers are applicable only to sentences, and the first-order constructs follow the pattern of any of several decidable fragments of first-order logic.
引用
下载
收藏
页码:3 / 22
页数:20
相关论文
共 50 条
  • [1] On non-local propositional and local one-variable quantified CTL
    Bauer, S
    Hodkinson, I
    Wolter, F
    Zakharyaschev, M
    NINTH INTERNATIONAL SYMPOSIUM ON TEMPORAL REPRESENTATION AND REASONING, PROCEEDINGS, 2002, : 2 - 9
  • [2] Monodic temporal logic with quantified propositional variables
    Hussak, Walter
    JOURNAL OF LOGIC AND COMPUTATION, 2012, 22 (03) : 517 - 544
  • [3] Weak solutions for Euler systems with non-local interactions
    Carrillo, Jose A.
    Feireisl, Eduard
    Gwiazda, Piotr
    Swierczewska-Gwiazda, Agnieszka
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2017, 95 : 705 - 724
  • [4] MUON DECAY IN A NON-LOCAL THEORY OF WEAK INTERACTIONS
    EFIMOV, GV
    SELTSER, SZ
    SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1970, 10 (06): : 705 - &
  • [5] NON-LOCAL FIELD AND NON-LOCAL INTERACTION
    KATAYAMA, Y
    PROGRESS OF THEORETICAL PHYSICS, 1952, 8 (03): : 381 - 382
  • [6] Two weak solutions for perturbed non-local fractional equations
    Zhang, Binlin
    Ferrara, Massimiliano
    APPLICABLE ANALYSIS, 2015, 94 (05) : 891 - 902
  • [7] Weak lower semicontinuity and relaxation for a class of non-local functionals
    Pablo Pedregal
    Revista Matemática Complutense, 2016, 29 : 485 - 495
  • [8] Weak lower semicontinuity and relaxation for a class of non-local functionals
    Pedregal, Pablo
    REVISTA MATEMATICA COMPLUTENSE, 2016, 29 (03): : 485 - 495
  • [9] General non-local electrodynamics: Equations and non-local effects
    Tarasov, Vasily E.
    ANNALS OF PHYSICS, 2022, 445
  • [10] Simulating non-prenex cuts in quantified propositional calculus
    Jerabek, Emil
    Phuong Nguyen
    MATHEMATICAL LOGIC QUARTERLY, 2011, 57 (05) : 524 - 532