Phage Particles of Controlled Length and Genome for In Vivo Targeted Glioblastoma Imaging and Therapeutic Delivery

被引:31
|
作者
Tsedev, Uyanga [1 ,2 ]
Lin, Ching-Wei [2 ,3 ]
Hess, Gaelen T. [2 ,4 ]
Sarkaria, Jann N. [5 ]
Lam, Fred C. [2 ,6 ]
Belcher, Angela M. [1 ,2 ]
机构
[1] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
[2] MIT, David H Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA
[3] Acad Sinica, Inst Atom & Mol Sci, Taipei 10617, Taiwan
[4] Univ Wisconsin Madison, Dept Biomol Chem, Madison, WI 53705 USA
[5] Mayo Clin Rochester, Dept Radiat Oncol, Rochester, MN 55902 USA
[6] St Elizabeths Med Ctr, Div Neurosurg, Brighton, MA 02135 USA
关键词
glioblastoma targeting; short-wavelength infrared imaging; engineered m13 bacteriophage; nanotheranostic particle; materials and gene delivery; BLOOD-BRAIN-BARRIER; FILAMENTOUS PHAGE; M13; BACTERIOPHAGE; CARBON NANOTUBES; PEPTIDE; CHLOROTOXIN; PHARMACOKINETICS; BIODISTRIBUTION; NANOPARTICLES; CANCER;
D O I
10.1021/acsnano.1c08720
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
M13 bacteriophage (phage) are versatile, genetically tunable nanocarriers that have been recently adapted for use as diagnostic and therapeutic platforms. Applying p3 capsid chlorotoxin fusion with the "inho" circular single-stranded DNA (cssDNA) gene packaging system, we produced miniature chlorotoxin inho (CTX-inho) phage particles with a minimum length of 50 nm that can target intracranial orthotopic patient-derived GBM22 glioblastoma tumors in the brains of mice. Systemically administered indocyanine green conjugated CTX-inho phage accumulated in brain tumors, facilitating shortwave infrared detection. Furthermore, we show that our inho phage can carry cssDNA that are transcriptionally active when delivered to GBM22 glioma cells in vitro. The ability to modulate the capsid display, surface loading, phage length, and cssDNA gene content makes the recombinant M13 phage particle an ideal delivery platform.
引用
收藏
页码:11676 / 11691
页数:16
相关论文
共 50 条
  • [1] In vivo imaging of molecularly targeted phage
    Kelly, Kimberly A.
    Waterman, Peter
    Weissleder, Ralph
    NEOPLASIA, 2006, 8 (12): : 1011 - 1018
  • [2] Therapeutic Genome Editing and In Vivo Delivery
    Amanda Catalina Ramirez-Phillips
    Dexi Liu
    The AAPS Journal, 23
  • [3] Therapeutic Genome Editing and In Vivo Delivery
    Ramirez-Phillips, Amanda Catalina
    Liu, Dexi
    AAPS JOURNAL, 2021, 23 (04):
  • [4] Targeted nonviral delivery of genome editors in vivo
    Tsuchida, Connor A.
    Wasko, Kevin M.
    Hamilton, Jennifer R.
    Doudna, Jennifer A.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (11)
  • [5] Targeted drug delivery for treatment and imaging of glioblastoma multiforme
    Stukel, Jill M.
    Caplan, Michael R.
    EXPERT OPINION ON DRUG DELIVERY, 2009, 6 (07) : 705 - 718
  • [6] In Vivo Delivery Systems for Therapeutic Genome Editing
    Wang, Luyao
    Li, Fangfei
    Dang, Lei
    Liang, Chao
    Wang, Chao
    He, Bing
    Liu, Jin
    Li, Defang
    Wu, Xiaohao
    Xu, Xuegong
    Lu, Aiping
    Zhang, Ge
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2016, 17 (05)
  • [7] Nanomaterials for targeted delivery of therapeutic and imaging agents
    Chockalingam, S.
    Packirisamy, Gopinath
    Paulmurugan, Ramasamy
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2022, 10
  • [8] Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos
    Karimi, Mahdi
    Mirshekari, Hamed
    Basri, Seyed Masoud Moosavi
    Bahrami, Sajad
    Moghoofei, Mohsen
    Hamblin, Michael R.
    ADVANCED DRUG DELIVERY REVIEWS, 2016, 106 : 45 - 62
  • [9] VEGFR-targeted angiogenesis imaging for therapeutic evaluation in glioblastoma
    Liu, Zhiyi
    Li, Feng
    Li, Zheng
    JOURNAL OF NUCLEAR MEDICINE, 2015, 56 (03)
  • [10] Dextrans for targeted and sustained delivery of therapeutic and imaging agents
    Mehvar, R
    JOURNAL OF CONTROLLED RELEASE, 2000, 69 (01) : 1 - 25