Design and Analysis of a Piezoelectric Vibration Energy Harvester Using Rolling Mechanism

被引:14
|
作者
Zou, Hong-Xiang [1 ]
Zhang, Wen-Ming [1 ]
Wei, Ke-Xiang [2 ]
Li, Wen-Bo [1 ]
Peng, Zhi-Ke [1 ]
Meng, Guang [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mech Engn, State Key Lab Mech Syst & Vibrat, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
[2] Hunan Inst Engn, Hunan Prov Key Lab Wind Generator & Its Control, 88 Fuxing East Rd, Xiangtan 411101, Peoples R China
基金
中国国家自然科学基金;
关键词
RESONANCE;
D O I
10.1115/1.4033493
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, a novel piezoelectric vibration energy harvester using rolling mechanism is presented, with the advantage of harvesting more vibration energy and reducing the impact forces caused by the oscillation. The design utilizes an array arrangement of balls rolling the piezoelectric units, and a piezoelectric unit consists of a piezoceramic (PZT) layer and two raised metal layers bonded to both sides of the PZT layer. The rolling mechanism converts the irregular reciprocating vibration into the regular unidirectional rolling motion, which can generate high and relatively stable rolling force applied to the piezoelectric units. A theoretical model is developed to characterize the rolling mechanism of a ball rolling on a piezoelectric unit. And based on the model, the effects of structural design parameters on the performances of the vibration energy harvester are analyzed. The experimental results show that the rolling-based vibration energy harvester under random vibration can generate stable amplitude direct current (DC) voltage, which can be stored more conveniently than the alternating current (AC) voltage. The experimental results also demonstrate that the vibration energy harvester can generate the power about 1.5 mu W at resistive load 3.3 M Omega while the maximal rolling force is about 6.5 N. Due to the function of mechanical motion rectification and compact structure, the rolling mechanism can be suitable for integrating into a variety of devices, harvesting energy from uncertain vibration source and supplying electric energy to some devices requiring specific voltage value.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Design and analysis of cantilever based piezoelectric vibration energy harvester
    Savarimuthu, Kirubaveni
    Sankararajan, Radha
    Alsath, Gulam Nabi M.
    Roji, Ani Melfa M.
    CIRCUIT WORLD, 2018, 44 (02) : 78 - 86
  • [2] Design and Analysis of Vibration-Based Piezoelectric Energy Harvester
    Haid, Osob Mohamed
    Ralib, Aliza Aini Md
    Ab Rahim, Rosminazuin
    Hatta, Maziati Akmal Mohd
    Ahmad, Farah B.
    9TH INTERNATIONAL CONFERENCE ON MECHATRONICS ENGINEERING, ICOM 2024, 2024, : 39 - 44
  • [3] PIEZOELECTRIC VIBRATION ENERGY HARVESTER - DESIGN AND PROTOTYPE
    Cojocariu, Bogdan
    Hill, Anthony
    Escudero, Alejandra
    Xiao, Han
    Wang, Xu
    INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2012, VOL 12, 2013, : 451 - 460
  • [4] Nanoscale piezoelectric vibration energy harvester design
    Foruzande, Hamid Reza
    Hajnayeb, Ali
    Yaghootian, Amin
    AIP ADVANCES, 2017, 7 (09)
  • [5] Design and Analysis of a Bistable Vibration Energy Harvester Using Diamagnetic Levitation Mechanism
    Gao, Qiu-Hua
    Zhang, Wen-Ming
    Zou, Hong-Xiang
    Li, Wen-Bo
    Peng, Zhi-Ke
    Meng, Guang
    IEEE TRANSACTIONS ON MAGNETICS, 2017, 53 (10)
  • [6] Analysis and design of power conditioning circuit for piezoelectric vibration energy harvester
    Savarimuthu, Kirubaveni
    Sankararajan, Radha
    Murugesan, Sudha
    IET SCIENCE MEASUREMENT & TECHNOLOGY, 2017, 11 (06) : 723 - 730
  • [7] Design of arc spiral piezoelectric vibration energy harvester
    Deng L.
    Tang S.
    Wang D.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2022, 43 (10): : 50 - 57
  • [8] Integrated mechatronic design of an industrial piezoelectric vibration energy harvester
    Brusa, Eugenio
    Carrera, Anna
    Delprete, Cristiana
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2024, 31 (27) : 8966 - 8980
  • [9] Design and Optimization of Piezoelectric Cantilever Beam Vibration Energy Harvester
    Xu, Qiuyu
    Gao, Anran
    Li, Yigui
    Jin, Yan
    MICROMACHINES, 2022, 13 (05)
  • [10] ANALYSIS AND DESIGN OF A VIBRATION ENERGY HARVESTER USING PERMANENT MAGNETS
    Olaru, Radu
    Gherca, Robert
    Petrescu, Camella
    REVUE ROUMAINE DES SCIENCES TECHNIQUES-SERIE ELECTROTECHNIQUE ET ENERGETIQUE, 2014, 59 (02): : 131 - 140