The Diophantine Equation x4 ± y4 = iz2 in Gaussian Integers

被引:6
|
作者
Najman, Filip [1 ]
机构
[1] Univ Zagreb, Dept Math, Zagreb 10000, Croatia
来源
AMERICAN MATHEMATICAL MONTHLY | 2010年 / 117卷 / 07期
关键词
D O I
10.4169/000298910X496769
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we find all the solutions of the Diophantine equation x(4) +/- y(4) = iz(2) using elliptic curves over Q(i). Also, using the same method we give a new proof of Hilbert's result that the equation x(4) +/- y(4) = z(2) has only trivial solutions in Gaussian integers.
引用
收藏
页码:637 / 641
页数:5
相关论文
共 50 条
  • [1] On the Diophantine equation x4 + y4 = c
    Bremner, Andrew
    Tho, Nguyen Xuan
    ACTA ARITHMETICA, 2022, : 141 - 150
  • [2] DIOPHANTINE EQUATION X4 + Y4=2(U4 + V4)
    Izadi, Farzali
    Nabardi, Kamran
    MATHEMATICA SLOVACA, 2016, 66 (03) : 557 - 560
  • [3] INTEGERS REPRESENTED BY x4 - y4 REVISITED
    Bennett, Michael A.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 103 (01) : 38 - 49
  • [4] Solving diophantine equations x4 + y4 = qzP
    Dieulefait, LV
    ACTA ARITHMETICA, 2005, 117 (03) : 207 - 211
  • [5] On the Classical Diophantine Equation x4 + y4 + kx2y2 = z2
    Stoenchev, Miroslav
    Todorov, Venelin
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE20), 2021, 2333
  • [6] ON DIOPHANTINE EQUATION x4 + y4 = n(u4 + v4)
    Janfada, Ali S.
    Nabardi, Kamran
    MATHEMATICA SLOVACA, 2019, 69 (06) : 1245 - 1248
  • [7] ON THE DIOPHANTINE EQUATION X4+/-Y4=ZP
    POWELL, B
    BULLETIN DES SCIENCES MATHEMATIQUES, 1983, 107 (02): : 219 - 223
  • [8] On the Diophantine equation X4
    Alavi, S. D.
    Janfada, A. S.
    Abbaspour, A.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, (42): : 324 - 329
  • [9] ON THE NUMBER OF SOLUTIONS OF THE DIOPHANTINE EQUATION x2+2a . pb = y4
    Zhu, Huilin
    Le, Maohua
    Soydan, Goekhan
    MATHEMATICAL REPORTS, 2015, 17 (03): : 255 - 263
  • [10] On the diophantine equation X2-(1+a2)Y4=-2a
    Yuan PingZhi
    Zhang ZhongFeng
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (08) : 2143 - 2158