On semi-endomorphisms of groups

被引:3
|
作者
Beidar, KI [1 ]
Fong, Y [1 ]
Ke, WF [1 ]
Wu, WR [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Math, Tainan 70101, Taiwan
关键词
D O I
10.1080/00927879908826558
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a group G, a mapping alpha: G --> G is said to be a semi-endomorphism of G if alpha(x + y + x) = alpha(x) + alpha(y) + a(x) for all x,y is an element of G. It is shown that any nontrivial zero preserving semi-endomorphism of a finite simple group of order greater : than two is either an automorphism or an anti-automorphism. Moreover, the semi-endomorphisms of S-n, the symmetric group of degree n, n greater than or equal to 4, are described. As an application, it is proved that the semi-endomorphism nearring S(S-n) of S-n with n greater than or equal to 3 is equal to E(S-n) + M-c(S-n), where E(S-n) is the endomorphism nearring of S-n, and M-c(S-n) is the nearring of constant mappings of S-n.
引用
下载
收藏
页码:2193 / 2205
页数:13
相关论文
共 50 条
  • [1] On semi-endomorphisms of abelian groups
    Fong, Y
    Ke, WF
    Huang, FK
    Yeh, YN
    NEAR-RINGS AND NEAR FIELDS, PROCEEDINGS, 2001, : 72 - 78
  • [2] SUMS OF NORMAL SEMI-ENDOMORPHISMS
    ROBINSON, DA
    AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (05): : 537 - &
  • [3] ENDOMORPHISMS OF FIBERED GROUPS
    MAXSON, CJ
    PILZ, GF
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1989, 32 : 127 - 129
  • [4] On endomorphisms of semilattices of groups
    Samman, M
    Meldrum, JDP
    ALGEBRA COLLOQUIUM, 2005, 12 (01) : 93 - 100
  • [5] Endomorphisms of Kleinian groups
    Delzant, T
    Potygailo, L
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2003, 13 (02) : 396 - 436
  • [6] Endomorphisms of profinite groups
    Reid, Colin D.
    GROUPS GEOMETRY AND DYNAMICS, 2014, 8 (02) : 553 - 564
  • [7] ENDOMORPHISMS OF POLYCYCLIC GROUPS
    WEHRFRITZ, BAF
    MATHEMATISCHE ZEITSCHRIFT, 1983, 184 (01) : 97 - 99
  • [8] On endomorphisms of automatic groups
    Carvalho, Andre
    ANNALES MATHEMATIQUES DU QUEBEC, 2024, 48 (01): : 21 - 44
  • [9] Endomorphisms of Kleinian groups
    T. Delzant
    L. Potygailo
    Geometric & Functional Analysis GAFA, 2003, 13 : 396 - 436
  • [10] ENDOMORPHISMS OF POLYCYCLIC GROUPS
    FARKAS, DR
    MATHEMATISCHE ZEITSCHRIFT, 1982, 181 (04) : 567 - 574