For EOIR nanotechnology sensors, we elucidated the quantum mechanical nature of the Einstein photoelectric effect in terms of a field-effect transistor (FET) made of Carbon NanoTube (CNT) semiconductors. Consequently, we discovered a surprising low-pass band gap property, as opposed to the traditional sharp band-pass band-gaps. In other words, there exists a minimum amount of photon energy n (h) over barw shining on CNT is necessary to excite the semiconductor CNT into free electrons. Applying a static magnet along the longitudinal direction, the conduction electron and holes will spiral in the opposite direction over the surface reducing the current density and the collision recombination chance will therefore be reduced when travelling from the cathode end to the anode end, driven internally by the asymmetric semiconductor-metal (using Ag & Pd) work functions (Schottky interface effect) for an automatic triode read out.