Performance Analysis for Estimating a Target's Relaxation Frequencies From Frequency-Domain Electromagnetic Induction Data

被引:0
|
作者
Kerr, Andrew J. [1 ]
Scott, Waymond R., Jr. [1 ]
McClellan, James H. [1 ]
机构
[1] Georgia Inst Technol, Dept Elect & Comp Engn, Atlanta, GA 30332 USA
关键词
Tensors; Magnetic domains; Electromagnetic interference; Sensors; Magnetic sensors; Frequency response; Magnetic separation; Analysis; Cramer-Rao lower bound (CRB; CRLB); electromagnetic induction (EMI); relaxation frequency;
D O I
10.1109/LGRS.2021.3098762
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We present three analyses that explore the behavior of the Cramer-Rao lower bounds (CRBs) on estimating a target's relaxation frequency response from frequency-domain electromagnetic induction (EMI) data. In the first analysis, we show that the CRB on a given relaxation frequency is independent of the amplitudes of the other relaxations present in the target's relaxation frequency response. In the second, we show that the presence of a second relaxation frequency closer than one decade in frequency greatly increases the CRB on that relaxation frequency. Finally, we illustrate the behavior of the minimum root-mean-square error (RMSE) per relaxation frequency as a function of the number of relaxation frequencies present in the target's relaxation frequency response.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Performance Bounds for Target Parameter Estimation From Frequency-Domain Electromagnetic Induction Data
    Kerr, Andrew J.
    Scott, Waymond R., Jr.
    McClellan, James H.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [2] Target Classification and Identification Using Sparse Model Representations of Frequency-Domain Electromagnetic Induction Sensor Data
    Tantum, Stacy L.
    Scott, Waymond R., Jr.
    Morton, Kenneth D., Jr.
    Collins, Leslie M.
    Torrione, Peter A.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (05): : 2689 - 2706
  • [3] A device for shallow frequency-domain electromagnetic induction sounding
    Manstein, A. K.
    Panin, G. L.
    Tikunov, S. Yu.
    [J]. RUSSIAN GEOLOGY AND GEOPHYSICS, 2008, 49 (06) : 430 - 436
  • [4] Multielevation calibration of frequency-domain electromagnetic data
    Minsley, Burke J.
    Kass, M. Andy
    Hodges, Greg
    Smith, Bruce D.
    [J]. GEOPHYSICS, 2014, 79 (05) : E201 - E216
  • [5] THE TRANSFORMATION OF TIME-DOMAIN RELAXATION DATA INTO THE FREQUENCY-DOMAIN
    MOPSIK, FI
    [J]. IEEE TRANSACTIONS ON ELECTRICAL INSULATION, 1985, 20 (06): : 957 - 964
  • [6] Estimating one-dimensional models from frequency-domain electromagnetic data using modular neural networks
    Poulton, MM
    Birken, RA
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1998, 36 (02): : 547 - 555
  • [7] Simple phenomenological models for wideband frequency-domain electromagnetic induction
    Miller, JT
    Bell, TH
    Soukup, J
    Keiswetter, D
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (06): : 1294 - 1298
  • [8] Relief effects correction on frequency-domain electromagnetic data
    Sifontes, Rimary Valera
    Sato, Hedison Kiuity
    [J]. GEOPHYSICS, 2019, 84 (01) : E1 - E11
  • [9] Relief geometric effects on frequency-domain electromagnetic data
    Sifontes, Rimary Valera
    Sato, Hedison Kiuity
    Ibrahim Moumoni, Zoukaneri
    [J]. GEOPHYSICS, 2016, 81 (05) : E287 - E296
  • [10] Frequency-Domain Electromagnetic Induction Sensor Data Feature Extraction and Processing for Improved Landmine Detection
    Tantum, Stacy L.
    Morton, Kenneth D., Jr.
    Collins, Leslie M.
    Torrione, Peter A.
    [J]. DETECTION AND SENSING OF MINES, EXPLOSIVE OBJECTS, AND OBSCURED TARGETS XVI, 2011, 8017