Analysis of nonlinear dynamics and detecting messages embedded in chaotic carriers using sample entropy algorithm

被引:7
|
作者
Li, Nianqiang [1 ]
Pan, Wei [1 ]
Yan, Lianshan [1 ]
Luo, Bin [1 ]
Xu, Mingfeng [1 ]
Tang, Yilong [1 ]
Jiang, Ning [1 ]
Xiang, Shuiying [1 ]
机构
[1] SW Jiaotong Univ, Ctr Informat Photon & Commun, Chengdu 610031, Sichuan, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
OPTICAL COMMUNICATIONS; SEMICONDUCTOR-LASERS; FEEDBACK; SYNCHRONIZATION; COMMUNICATION; APPROXIMATE; ENCRYPTION; SUBJECT;
D O I
10.1364/JOSAB.28.002018
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Sample entropy is introduced as a versatile measure for analyzing chaos dynamics and chaos communications. This measure can be directly applied to distinguish different dynamic behaviors for their superior advantages, such as fast computation (available for short data), extreme simplicity, robustness, and even more efficiency in the presence of a certain amount of noise. For the unidirectional coupling master-slave configuration of semiconductor lasers, it is shown that sample entropy analysis can be an effective tool to reveal the chaos synchronization quality. More particularly, when employed to discriminate the encryption performance of a chaos modulation scheme, the sample entropy algorithm seems to be a powerful and complementary tool for detecting and quantifying the presence of a message within a chaotic carrier. (C) 2011 Optical Society of America
引用
收藏
页码:2018 / 2024
页数:7
相关论文
共 50 条
  • [2] Detecting Ventricular Fibrillation by Fast Algorithm of Dynamic Sample Entropy
    Li, Haiyan
    Han, Wenguang
    Hu, Chao
    Meng, Max Q. -H.
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO 2009), VOLS 1-4, 2009, : 1105 - +
  • [3] Detecting switch dynamics in chaotic time-waveform using a parametrized family of nonlinear predictors
    Tokuda, I
    Tokunaga, R
    Matsumoto, T
    [J]. PHYSICA D, 2000, 135 (1-2): : 63 - 78
  • [4] Nonlinear entropy analysis for detecting focal cerebral ischemia
    Wu, HJ
    Zheng, CX
    Zhang, JW
    Zhang, H
    [J]. IEEE EMBS APBME 2003, 2003, : 182 - 183
  • [5] Chaotic radar using nonlinear laser dynamics
    Lin, FY
    Liu, JM
    [J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 2004, 40 (06) : 815 - 820
  • [6] Chaotic radar using nonlinear laser dynamics
    Department of Electrical Engineering, University of California, Los Angeles, CA 90095-1594, United States
    [J]. IEEE J. Quantum Electron., 1600, 6 (815-820):
  • [7] Weighted fractional permutation entropy and fractional sample entropy for nonlinear Potts financial dynamics
    Xu, Kaixuan
    Wang, Jun
    [J]. PHYSICS LETTERS A, 2017, 381 (08) : 767 - 779
  • [8] Nonlinear dynamics time series analysis of chaotic current oscillations in a semi-insulating GaAs sample
    da Silva, RL
    Rubinger, RM
    de Oliveira, AG
    Ribeiro, GM
    [J]. BRAZILIAN JOURNAL OF PHYSICS, 2002, 32 (02) : 412 - 414
  • [9] Approximate entropy analysis for nonlinear beam dynamics
    Li, Yongjun
    Rainer, Robert
    [J]. PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2024, 27 (01)
  • [10] Detecting unstable periodic orbits embedded in chaotic systems using the simplex method
    Fuh, Chyun-Chau
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (04) : 1032 - 1037